Double Absorbing Boundary Formulations for Acoustics and Elastodynamics

Wave problems in unbounded domains are often treated numerically by truncating the domain to produce a finite computational domain. The double absorbing boundary (DAB) method, which was invented recently as an alternative to methods of high-order absorbing boundary conditions and to the perfectly matched layer, is investigated here for problems in acoustics and elastodynamics. The paper offers two main contributions. The first one pertains to the well-posedness of the DAB scheme for the acoustics problem written in second-order form. The energy method is employed to obtain uniform-in-time estimates of the norm of the solution and the auxiliary functions, thus establishing the well-posedness and asymptotic stability of the DAB formulation. The second part pertains to the extension of the DAB to isotropic elastodynamics, written in first-order conservation form. Numerical experiments for an elastic wave guide demonstrate the performance of the scheme.

[1]  Dan Givoli,et al.  Finite element analysis of time‐dependent semi‐infinite wave‐guides with high‐order boundary treatment , 2003 .

[2]  Eitan Tadmor,et al.  Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1985 .

[3]  Dan Givoli,et al.  Complete Radiation Boundary Conditions for Convective Waves , 2012 .

[4]  Dan Givoli,et al.  Long-time stable high-order absorbing boundary conditions for elastodynamics , 2012 .

[5]  Dan Givoli,et al.  High-order local absorbing conditions for the wave equation: Extensions and improvements , 2008, J. Comput. Phys..

[6]  J. Marsden,et al.  Classical elastodynamics as a linear symmetric hyperbolic system , 1978 .

[7]  L. John,et al.  Finite dynamic model for infinite media , 1969 .

[8]  David J. Evans,et al.  Finite element solution of time-dependent problems , 1987 .

[9]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[10]  Dan Givoli,et al.  Computational Absorbing Boundaries , 2008 .

[11]  D. Givoli High-order local non-reflecting boundary conditions: a review☆ , 2004 .

[12]  Dan Givoli,et al.  Radiation boundary conditions for time-dependent waves based on complete plane wave expansions , 2010, J. Comput. Appl. Math..

[13]  O. Ghattas,et al.  Parallel Octree-Based Finite Element Method for Large-Scale Earthquake Ground Motion Simulation , 2005 .

[14]  Patrick Joly,et al.  Absorbing boundary conditions for Rayleigh waves , 1988 .

[15]  Kim B. Olsen,et al.  Model for Basin Effects on Long-Period Response Spectra in Southern California , 2008 .

[16]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[17]  Chrysoula Tsogka Modélisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés , 1999 .

[18]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[19]  Patrick Joly,et al.  Numerical Methods for Treating Unbounded Media , 2008 .

[20]  Tim Warburton,et al.  Complete Radiation Boundary Conditions: Minimizing the Long Time Error Growth of Local Methods , 2009, SIAM J. Numer. Anal..

[21]  Dan Givoli,et al.  The Double Absorbing Boundary method , 2014, J. Comput. Phys..

[22]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[23]  Dan Givoli,et al.  High-order Absorbing Boundary Conditions for anisotropic and convective wave equations , 2010, J. Comput. Phys..

[24]  Dan Givoli,et al.  HIGH ORDER ABSORBING BOUNDARY CONDITIONS FOR ELASTODYNAMICS , 2011 .

[25]  Dan Givoli,et al.  A finite element scheme with a high order absorbing boundary condition for elastodynamics , 2011 .

[26]  Thomas Hagstrom,et al.  A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems , 2004 .

[27]  Dan Givoli,et al.  STRESS–VELOCITY COMPLETE RADIATION BOUNDARY CONDITIONS , 2013 .

[28]  L. Hervella-Nieto,et al.  Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems , 2010 .