Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.

[1]  E. Warburg,et al.  Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom , 1899 .

[2]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[3]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[4]  T. Osaka,et al.  Dependence of Film Thickness on Electrochemical Kinetics of Polypyrrole and on Properties of Lithium/Polypyrrole Battery , 1987 .

[5]  F. Jonas,et al.  Poly(alkylenedioxythiophene)s—new, very stable conducting polymers , 1992 .

[6]  G. Gross,et al.  Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes , 1993, Journal of Neuroscience Methods.

[7]  D. Bélanger,et al.  Impedance study of polypyrrole films doped with tetrathiomolybdate anions and containing molybdenum trisulfide , 1993 .

[8]  S. R. Taylor,et al.  Electrochemical Impedance Spectroscopy of Coated Aluminum Beverage Containers: Part 1 Determination of an Optimal Parameter for Large Sample Evaluation , 1994 .

[9]  Thomas M. McKenna,et al.  Enabling Technologies for Cultured Neural Networks , 1994 .

[10]  R Langer,et al.  Stimulation of neurite outgrowth using an electrically conducting polymer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Cosnier Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. , 1999, Biosensors & bioelectronics.

[12]  Gordon G. Wallace,et al.  Conducting electroactive polymer-based biosensors , 1999 .

[13]  M Bove,et al.  An array of Pt-tip microelectrodes for extracellular monitoring of activity of brain slices. , 1999, Biosensors & bioelectronics.

[14]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[15]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[16]  A. Ivaska,et al.  Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions , 2000 .

[17]  David J. Anderson,et al.  Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes , 2001 .

[18]  A. Heeger,et al.  Biosensors from conjugated polyelectrolyte complexes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[20]  Asha Chaubey,et al.  Application of conducting polymers to biosensors. , 2002, Biosensors & bioelectronics.

[21]  Olle Inganäs,et al.  Polymer Hydrogel Microelectrodes for Neural Communication , 2002 .

[22]  David C. Martin,et al.  Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays , 2003 .

[23]  A. Matthews,et al.  An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling , 2003 .

[24]  B. D. Malhotra,et al.  Conducting polymer based biomolecular electronic devices , 2003 .

[25]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[26]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[27]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[28]  A. Ivaska,et al.  Electrochemical synthesis and characterization of poly(3,4-ethylenedioxythiophene) in ionic liquids with bulky organic anions , 2004 .

[29]  David C. Martin,et al.  Microporous conducting polymers on neural microelectrode arrays: II. Physical characterization , 2004 .

[30]  David C. Martin,et al.  Microporous conducting polymers on neural microelectrode arrays: I Electrochemical deposition , 2004 .

[31]  David C. Martin,et al.  Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. , 2004, Journal of biomedical materials research. Part A.

[32]  Paul M. George,et al.  Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. , 2005, Biomaterials.

[33]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[34]  David C. Martin,et al.  Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film , 2006, Journal of neural engineering.

[35]  J. Wit,et al.  Electrochemical behaviour of poly(pyrrole) coatings on steel , 2006 .

[36]  M. Abidian,et al.  Conducting‐Polymer Nanotubes for Controlled Drug Release , 2006, Advanced materials.

[37]  H. P. Schwan,et al.  Linear and nonlinear electrode polarization and biological materials , 2006, Annals of Biomedical Engineering.

[38]  M. Grätzel,et al.  Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. , 2006, The journal of physical chemistry. B.

[39]  B. Onaral,et al.  Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies , 1982, Medical and Biological Engineering and Computing.

[40]  M. Berggren,et al.  Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. , 2007, Nature materials.

[41]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[42]  D. Kipke,et al.  In-vivo Evaluation of Chronically Implanted Neural Microelectrode Arrays Modified with Poly (3,4-ethylenedioxythiophene) Nanotubes , 2007, 2007 3rd International IEEE/EMBS Conference on Neural Engineering.