Building Summary Graphs of RDF Data in Semantic Web

The structured data available in the semantic web have been rapidly increasing with the contribution of linked open data and other similar community initiatives in recent years. Thus, searching and processing large data have become more challenging. Building a summary graph can help reduce the computational complexity and query time in semantic searches by providing an intermediate index structure which contains entity type classes and relations between them. In the current study, we propose an algorithm for discovering the types of entities in RDF data and for building a summary graph structure for faster computational processing.

[1]  Michael R. Lyu,et al.  PageSim: a novel link-based measure of web page aimilarity , 2006, WWW '06.

[2]  Steven Pemberton,et al.  RDFa in XHTML: Syntax and Processing , 2008 .

[3]  Tantek Çelik,et al.  Microformats: a pragmatic path to the semantic web , 2006, WWW '06.

[4]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[5]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[6]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[7]  Chao Wang,et al.  Integration of Ontology Data through Learning Instance Matching , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[8]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[9]  Chimezie Ogbuji,et al.  SemanticDB: A semantic Web infrastructure for clinical research and quality reporting , 2012 .

[10]  Thanh Tran Structure Index for RDF Data , 2010 .

[11]  Michael R. Lyu,et al.  MatchSim: a novel neighbor-based similarity measure with maximum neighborhood matching , 2009, CIKM.

[12]  Philip S. Yu,et al.  PathSim , 2011, Proc. VLDB Endow..

[13]  Stefan Schlobach,et al.  An Empirical Study of Instance-Based Ontology Matching , 2007, ISWC/ASWC.

[14]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[15]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[16]  Ruoming Jin,et al.  Axiomatic ranking of network role similarity , 2011, KDD.

[17]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[18]  Silvana Castano,et al.  Instance Matching for Ontology Population , 2008, SEBD.

[19]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[20]  Henry G. Small,et al.  Co-citation in the scientific literature: A new measure of the relationship between two documents , 1973, J. Am. Soc. Inf. Sci..

[21]  Ioannis Antonellis,et al.  Simrank++: query rewriting through link analysis of the clickgraph (poster) , 2007, Proc. VLDB Endow..

[22]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[23]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..