Value function for regional control problems via dynamic programming and Pontryagin maximum principle

In this paper we focus on regional deterministic optimal control problems, i.e., problems where the dynamics and the cost functional may be different in several regions of the state space and present discontinuities at their interface. Under the assumption that optimal trajectories have a locally finite number of switchings (no Zeno phenomenon), we use the duplication technique to show that the value function of the regional optimal control problem is the minimum over all possible structures of trajectories of value functions associated with classical optimal control problems settled over fixed structures, each of them being the restriction to some submanifold of the value function of a classical optimal control problem in higher dimension.The lifting duplication technique is thus seen as a kind of desingularization of the value function of the regional optimal control problem. In turn, we extend to regional optimal control problems the classical sensitivity relations and we prove that the regularity of this value function is the same (i.e., is not more degenerate) than the one of the higher-dimensional classical optimal control problem that lifts the problem.

[1]  E. Trélat,et al.  Genericity results for singular curves , 2006 .

[2]  Richard B. Vinter,et al.  Optimal multiprocesses , 1989 .

[3]  A. V. Dmitruk,et al.  The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle , 2008, Syst. Control. Lett..

[4]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[5]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[6]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[7]  H. Sussmann A nonsmooth hybrid maximum principle , 1999 .

[8]  Guy Barles,et al.  A Bellman approach for two-domains optimal control problems in R N , 2011, 1112.3727.

[9]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[10]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[11]  Emmanuel Trélat,et al.  Contrôle optimal : théorie & applications , 2005 .

[12]  Guy Barles,et al.  A Bellman Approach for Regional Optimal Control Problems in RN , 2013, SIAM J. Control. Optim..

[13]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[14]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[15]  Alberto Bressan,et al.  Optimal control problems on stratified domains , 2007, Networks Heterog. Media.

[16]  Marco Caponigro,et al.  Regularization of Chattering Phenomena via Bounded Variation Controls , 2013, IEEE Transactions on Automatic Control.

[17]  Emmanuel Chasseigne,et al.  (Almost) Everything you always wanted to know about deterministic control problems in stratified domains , 2015, Networks Heterog. Media.

[18]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[19]  Emmanuel Trélat,et al.  Solutions sous-analytiques globales de certaines quations d'Hamilton?JacobiGlobal subanalytic solutions of Hamilton?Jacobi type equations , 2003 .

[20]  H. Zidani,et al.  Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations , 2014 .

[21]  G. Stefani Regularity properties of the minimum-time map , 1991 .

[22]  Mauro Garavello,et al.  Hybrid Necessary Principle , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Emmanuel Trélat,et al.  Morse-Sard type results in sub-Riemannian geometry , 2005 .

[24]  Emmanuel Tr'elat,et al.  On the stabilization problem for nonholonomic distributions , 2006, math/0610363.

[25]  Frank H. Clarke,et al.  The relationship between the maximum principle and dynamic programming , 1987 .

[26]  Frédéric Kratz,et al.  An Optimal Control Approach for Hybrid Systems , 2003, Eur. J. Control.

[27]  On regularity properties of extremal controls , 1995 .

[28]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[29]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[30]  H. Zidani,et al.  Infinite horizon problems on stratifiable state-constraints sets ☆ , 2015 .

[31]  Hasnaa Zidani,et al.  A Hamilton-Jacobi approach to junction problems and application to traffic flows , 2011, 1107.3250.

[32]  Hasnaa Zidani,et al.  Hamilton-Jacobi-Bellman Equations on Multi-domains , 2013, Control and Optimization with PDE Constraints.

[33]  S. Shankar Sastry,et al.  Sufficient Conditions for the Existence of Zeno Behavior , 2007, Proceedings of the 44th IEEE Conference on Decision and Control.

[34]  Emmanuel Trélat,et al.  Optimal Control and Applications to Aerospace: Some Results and Challenges , 2012, Journal of Optimization Theory and Applications.

[35]  Emmanuel Trélat,et al.  Singular Trajectories of Control-Affine Systems , 2006, SIAM J. Control. Optim..