Smooth finite element methods: Convergence, accuracy and properties

A stabilized conforming nodal integration finite element method based on strain smoothing stabilization is presented. The integration of the stiffness matrix is performed on the boundaries of the finite elements. A rigorous variational framework based on the Hu–Washizu assumed strain variational form is developed.

[1]  K. Y. Dai,et al.  Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .

[2]  Marc Duflot,et al.  Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .

[3]  James G. Conley,et al.  A simulation-based design paradigm for complex cast components , 2007, Engineering with Computers.

[4]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[5]  M. Duflot A meshless method with enriched weight functions for three‐dimensional crack propagation , 2006 .

[6]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[7]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[8]  Ni Sheng,et al.  Stabilized conforming nodal integration: exactness and variational justification , 2004 .

[9]  B. Moran,et al.  Stabilized conforming nodal integration in the natural‐element method , 2004 .

[10]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[11]  J. Debongnie Some aspects of the finite element errors , 2001 .

[12]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[13]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[14]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[15]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[16]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[17]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[18]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[19]  T. Belytschko,et al.  Nodal integration of the element-free Galerkin method , 1996 .

[20]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[21]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[22]  Pierre Beckers,et al.  Dual analysis with general boundary conditions , 1995 .

[23]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[24]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[25]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[26]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[27]  J. C. Simo,et al.  On the Variational Foundations of Assumed Strain Methods , 1986 .

[28]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[29]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[30]  T. Hughes Generalization of selective integration procedures to anisotropic and nonlinear media , 1980 .

[31]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[32]  Theodore H. H. Pian,et al.  Basis of finite element methods for solid continua , 1969 .