PEM fuel cell fractional order modeling and identification

Abstract This paper deals with the modeling and identification of a fuel cell system using two models. It presents a comparative study between a conventional impedance model based on an equivalent electrical circuit and a fractional order model of fuel cell. In the first case, a least square method is used to identify the parameters of the model. While the second case considers a fractional order model and proposes a parameter identification approach based on the least square method adapted to fractional order models. By using these two models, this study aims to characterize the fuel cell impedance and identify the model's parameters in the objective of establishing a diagnosis method of the flooding state of the fuel cell. Experimental results, obtained from measurements made using a single PEM fuel cell, show that fractional order impedance models describe the real system behavior better than the impedance models of integer order. The goal of this work is to develop models and identification methods in view of implementing a diagnosis methodology of the fuel cell internal state in order to apply this technology to automotive sector.

[1]  B. Davat,et al.  Contributions of fractional differentiation to the modelling of electric double layer capacitance , 2010 .

[2]  Vincent Phlippoteau Outils et Méthodes pour le diagnostic d’un état de santé d’une pile à combustible , 2009 .

[3]  Szymon Racewicz Identification et modélisation d'ordre fractionnaire des machines synchrones fonctionnant comme générateur , 2010 .

[4]  Phatiphat Thounthong,et al.  Using electrical analogy to describe mass and charge transport in PEM fuel cell , 2012 .

[5]  Nicolas Fouquet Caractérisation de l’état de fonctionnement d’une pile à combustible PEM par spectroscopie d’impédance électrochimique : application a la surveillance en temps réel du contenu en eau de l’assemblage membrane électrode , 2006 .

[6]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[7]  François Dubois,et al.  Introduction à la dérivation fractionnaire - Théorie et applications , 2010, Mathématiques.

[8]  Thierry Poinot,et al.  Approximation and identification of diffusive interfaces by fractional models , 2006, Signal Process..

[9]  M. Usman Iftikhar,et al.  Modélisation fractionnaire des piles à combustible de type PEMFC , 2007 .

[10]  T. Meynard,et al.  Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack , 2007, IEEE Transactions on Power Electronics.

[11]  S. Yuvarajan,et al.  Electronic circuit model for proton exchange membrane fuel cells , 2005 .

[12]  Guillaume Fontes,et al.  Modélisation et caractérisation de la pile PEM pour l'étude des interactions avec les convertisseurs statiques , 2005 .

[13]  A. Oustaloup Systèmes asservis linéaires d'ordre fractionnaire : théorie et pratique , 1983 .

[14]  Bernard Davat,et al.  An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling , 2012 .

[15]  Olivier Cois,et al.  Systèmes linéaires non entiers et identification par modèle non entier : application en thermique , 2002 .

[16]  M. Usman Iftikhar,et al.  Dynamic modeling of proton exchange membrane fuel cell using non-integer derivatives , 2006 .

[17]  Thierry Meynard,et al.  Interactions between fuel cells and power converters influence of current harmonics on a fuel cell stack , 2004, PESC 2004.

[18]  I. Sadli Modélisation par impédance d'une pile à combustible PEM pour utilisation en électronique de puissance , 2006 .

[19]  S. Victor Identification par modèle non entier pour la poursuite robuste de trajectoire par platitude , 2010 .