An O(n 3 loglogn/log2 n) Time Algorithm for All Pairs Shortest Paths

We present an O(n3 loglogn/log2n) time algorithm for all pairs shortest paths. This algorithm improves on the best previous result of O(n3 (loglogn)3/log2n) time.

[1]  Susanne Albers,et al.  Improved parallel integer sorting without concurrent writing , 1992, SODA '92.

[2]  Yijie Han,et al.  An O(n3(log log n/log n)5/4) Time Algorithm for All Pairs Shortest Path , 2008, Algorithmica.

[3]  Uri Zwick,et al.  A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths , 2004, ISAAC.

[4]  Raimund Seidel,et al.  On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs , 1995, J. Comput. Syst. Sci..

[5]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[6]  Seth Pettie,et al.  A Faster All-Pairs Shortest Path Algorithm for Real-Weighted Sparse Graphs , 2002, ICALP.

[7]  Yijie Han,et al.  Improved algorithm for all pairs shortest paths , 2004, Inf. Process. Lett..

[8]  Yijie Han A note of an O(n3/logn) time algorithm for all pairs shortest paths , 2008, Inf. Process. Lett..

[9]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[10]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[11]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[12]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[13]  Zvi Galil,et al.  All Pairs Shortest Distances for Graphs with Small Integer Length Edges , 1997, Inf. Comput..

[14]  Timothy M. Chan All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time , 2005, WADS.

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[16]  Timothy M. Chan More Algorithms for All-Pairs Shortest Paths in Weighted Graphs , 2010, SIAM J. Comput..

[17]  Tadao Takaoka An O(n3loglogn/logn) time algorithm for the all-pairs shortest path problem , 2005, Inf. Process. Lett..

[18]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[19]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[20]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.

[21]  Michael L. Fredman,et al.  New Bounds on the Complexity of the Shortest Path Problem , 1976, SIAM J. Comput..

[22]  V. Strassen Gaussian elimination is not optimal , 1969 .

[23]  Piotr Sankowski,et al.  Shortest Paths in Matrix Multiplication Time , 2005, ESA.

[24]  Raphael Yuster,et al.  Answering distance queries in directed graphs using fast matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[25]  Uri Zwick,et al.  All pairs shortest paths using bridging sets and rectangular matrix multiplication , 2000, JACM.

[26]  Tadao Takaoka,et al.  A New Upper Bound on the Complexity of the All Pairs Shortest Path Problem , 1991, Inf. Process. Lett..

[27]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[28]  W. Dobosiewicz A more efficient algorithm for the min-plus multiplication , 1990 .

[29]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.