Dendrite-Specific Amplification of Weak Synaptic Input during Network Activity In Vivo

Summary Excitatory synaptic input reaches the soma of a cortical excitatory pyramidal neuron via anatomically segregated apical and basal dendrites. In vivo, dendritic inputs are integrated during depolarized network activity, but how network activity affects apical and basal inputs is not understood. Using subcellular two-photon stimulation of Channelrhodopsin2-expressing layer 2/3 pyramidal neurons in somatosensory cortex, nucleus-specific thalamic optogenetic stimulation, and paired recordings, we show that slow, depolarized network activity amplifies small-amplitude synaptic inputs targeted to basal dendrites but reduces the amplitude of all inputs from apical dendrites and the cell soma. Intracellular pharmacology and mathematical modeling suggests that the amplification of weak basal inputs is mediated by postsynaptic voltage-gated channels. Thus, network activity dynamically reconfigures the relative somatic contribution of apical and basal inputs and could act to enhance the detectability of weak synaptic inputs.

[1]  F. Helmchen,et al.  Boosting of Action Potential Backpropagation by Neocortical Network Activity In Vivo , 2004, The Journal of Neuroscience.

[2]  J. Lambert,et al.  Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones , 1999, The Journal of physiology.

[3]  G. Barrionuevo,et al.  Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. , 2001, Journal of neurophysiology.

[4]  Alison L. Barth,et al.  Experimental evidence for sparse firing in the neocortex , 2012, Trends in Neurosciences.

[5]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[6]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[7]  Susanne Schreiber,et al.  Somatic versus Dendritic Resonance: Differential Filtering of Inputs through Non-Uniform Distributions of Active Conductances , 2013, PloS one.

[8]  Jens Kremkow,et al.  In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons , 2015, Cell reports.

[9]  R. Metherate,et al.  Ionic flux contributions to neocortical slow waves and nucleus basalis- mediated activation: whole-cell recordings in vivo , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  K. Svoboda,et al.  The subcellular organization of neocortical excitatory connections , 2009, Nature.

[11]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[12]  Aurélie Pala,et al.  In Vivo Measurement of Cell-Type-Specific Synaptic Connectivity and Synaptic Transmission in Layer 2/3 Mouse Barrel Cortex , 2015, Neuron.

[13]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[14]  Charles J. Wilson,et al.  Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. , 2004, Journal of neurophysiology.

[15]  Benjamin F. Grewe,et al.  Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation , 2012, Nature Methods.

[16]  J. Corrie,et al.  Comparative analysis of inhibitory effects of caged ligands for the NMDA receptor , 2005, Journal of Neuroscience Methods.

[17]  Kaori Ikeda,et al.  Sublinear integration underlies binocular processing in primary visual cortex , 2013, Nature Neuroscience.

[18]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[19]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[20]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[21]  Alain Destexhe,et al.  Gain Modulation of Synaptic Inputs by Network State in Auditory Cortex In Vivo , 2015, The Journal of Neuroscience.

[22]  Alison L. Barth,et al.  Cortical fosGFP Expression Reveals Broad Receptive Field Excitatory Neurons Targeted by POm , 2014, Neuron.

[23]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[24]  K. Deisseroth,et al.  High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels , 2011, Proceedings of the National Academy of Sciences.

[25]  K. Deisseroth,et al.  In Vivo Optogenetic Stimulation of Neocortical Excitatory Neurons Drives Brain-State-Dependent Inhibition , 2011, Current Biology.

[26]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[27]  Nathalie L Rochefort,et al.  Reactivation of the same synapses during spontaneous up states and sensory stimuli. , 2013, Cell reports.

[28]  C. Koch,et al.  Synaptic background activity influences spatiotemporal integration in single pyramidal cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[29]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[30]  H. S. Meyer,et al.  Cell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[31]  Alison L. Barth,et al.  POm Thalamocortical Input Drives Layer-Specific Microcircuits in Somatosensory Cortex , 2018, Cerebral cortex.

[32]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[33]  J. Poulet,et al.  Single synaptic inputs drive high-precision action potentials in parvalbumin expressing GABA-ergic cortical neurons in vivo , 2018, Nature Communications.

[34]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[35]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[36]  Troy W. Margrie,et al.  Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons , 2014, Nature Reviews Neuroscience.

[37]  G. Ellis‐Davies,et al.  In vivo two‐photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice , 2011, The Journal of physiology.

[38]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[39]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[40]  C. Wilson,et al.  Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. , 1994, Journal of neurophysiology.

[41]  O. Hermanson,et al.  Genetic targeting of principal neurons in neocortex and hippocampus of NEX‐Cre mice , 2006, Genesis.

[42]  J. Poulet,et al.  The Cortical States of Wakefulness , 2019, Frontiers in Systems Neuroscience.

[43]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[45]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[46]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[47]  C. Petersen,et al.  State-dependent cell-type-specific membrane potential dynamics and unitary synaptic inputs in awake mice , 2018, eLife.

[48]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[49]  S. Sherman,et al.  Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse , 2011, Proceedings of the National Academy of Sciences.

[50]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[51]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[52]  J. Poulet,et al.  Multiple Two-Photon Targeted Whole-Cell Patch-Clamp Recordings From Monosynaptically Connected Neurons in vivo , 2019, bioRxiv.

[53]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[54]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[55]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[56]  A. Grinvald,et al.  Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[58]  Jens Kremkow,et al.  Translaminar Cortical Membrane Potential Synchrony in Behaving Mice , 2016, Cell reports.

[59]  Igor Timofeev,et al.  Modulation of synaptic transmission in neocortex by network activities , 2005, The European journal of neuroscience.

[60]  J. Poulet,et al.  A somatosensory circuit for cooling perception in mice , 2014, Nature Neuroscience.

[61]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[62]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[63]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[64]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[65]  Rafael Yuste,et al.  Two-photon optogenetics of dendritic spines and neural circuits in 3D , 2012, Nature Methods.