Unusually high thermal conductivity of carbon nanotubes
暂无分享,去创建一个
[1] V. Sailor,et al. THERMAL CONDUCTIVITY OF GRAPHITE , 1949 .
[2] R. Peierls,et al. Quantum theory of solids , 1956 .
[3] G. W. C. Kaye,et al. Tables of Physical and Chemical Constants , 2018 .
[4] M. G. Holland,et al. The lorenz number of graphite at very low temperatures , 1966 .
[5] A. Combarieu. Conductibilité thermique de graphite quasi monocristallin et effets d'irradiation aux neutrons. - I. mesures , 1967 .
[6] R. Bechmann,et al. Numerical data and functional relationships in science and technology , 1969 .
[7] T. Iwata,et al. Thermal Resistivity Changes in Electron-Irradiated Pyrolytic Graphite , 1975 .
[8] B. T. Kelly,et al. Physics of Graphite , 1981 .
[9] Denis J. Evans,et al. Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory , 1982 .
[10] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble , 1984 .
[11] S. C. O'brien,et al. C60: Buckminsterfullerene , 1985, Nature.
[12] Heremans,et al. Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.
[13] M. Schoen,et al. The shear viscosity of a Lennard-Jones fluid calculated by equilibrium molecular dynamics , 1985 .
[14] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[15] L. Verlet,et al. Molecular dynamics calculations of transport coefficients , 1987 .
[16] G. Fischer. Numerical data and functional relationships in science and technology , 1987 .
[17] J. Tersoff,et al. New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.
[18] J. Tersoff,et al. Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.
[19] R. Souda,et al. Surface phonon dispersion curves of graphite (0001) over the entire energy region , 1988 .
[20] Wei,et al. Thermal diffusivity of isotopically enriched 12C diamond. , 1990, Physical review. B, Condensed matter.
[21] Oshima,et al. Bond softening in monolayer graphite formed on transition-metal carbide surfaces. , 1990, Physical review. B, Condensed matter.
[22] D. Cahill. Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .
[23] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[24] White,et al. Are fullerene tubules metallic? , 1992, Physical review letters.
[25] Sawada,et al. New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.
[26] M. Dresselhaus,et al. Topological defects in large fullerenes , 1992 .
[27] William F. Banholzer,et al. Thermal conductivity of isotopically modified single crystal diamond. , 1993 .
[28] M. Dresselhaus,et al. Phonon modes in carbon nanotubules , 1993 .
[29] D. Evans,et al. A generalized heat flow algorithm , 1994 .
[30] Rodney S. Ruoff,et al. Mechanical and thermal properties of carbon nanotubes , 1995 .
[31] Lattice thermal conductivity via homogeneous nonequilibrium molecular dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[32] M. Dresselhaus. Carbon nanotubes , 1995 .
[33] M.G.B. Drew,et al. The art of molecular dynamics simulation , 1996 .
[34] L. B. Ebert. Science of fullerenes and carbon nanotubes , 1996 .
[35] H. Dai,et al. Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.
[36] S. Louie,et al. Heat capacity of carbon nanotubes , 1996 .
[37] D. C. Rapaport,et al. The Art of Molecular Dynamics Simulation , 1997 .
[38] M. Dresselhaus,et al. Physical properties of carbon nanotubes , 1998 .
[39] S. Xie,et al. Very long carbon nanotubes , 1998, Nature.
[40] Susumu Saito,et al. Effect of intertube coupling on the electronic structure of carbon nanotube ropes , 1998 .
[41] Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.
[42] Z. Pan,et al. Linear specific heat of carbon nanotubes , 1999 .
[43] A. Zettl,et al. Thermal conductivity of single-walled carbon nanotubes , 1998 .
[44] J. M. Worlock,et al. Measurement of the quantum of thermal conductance , 2000, Nature.
[45] W. Goddard,et al. Thermal conductivity of carbon nanotubes , 2000 .
[46] R. Smalley,et al. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .
[47] M. Dresselhaus,et al. Phonons in carbon nanotubes , 2000 .
[48] P. McEuen,et al. Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.
[49] P. Avouris,et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.
[50] J. Hone. Phonons and Thermal Properties of Carbon Nanotubes , 2001 .