Unusually high thermal conductivity of carbon nanotubes

Combining equilibrium and nonequilibrium molecular dynamics simulations with accurate carbon potentials, we determine the thermal conductivity lambda of carbon nanotubes and its dependence on temperature. Our results suggest an unusually high value, lambda approximately 6600 W/m K, for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond. Our results suggest that these high values of lambda are associated with the large phonon mean free paths in these systems; substantially lower values are predicted and observed for the basal plane of bulk graphite.

[1]  V. Sailor,et al.  THERMAL CONDUCTIVITY OF GRAPHITE , 1949 .

[2]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[3]  G. W. C. Kaye,et al.  Tables of Physical and Chemical Constants , 2018 .

[4]  M. G. Holland,et al.  The lorenz number of graphite at very low temperatures , 1966 .

[5]  A. Combarieu Conductibilité thermique de graphite quasi monocristallin et effets d'irradiation aux neutrons. - I. mesures , 1967 .

[6]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[7]  T. Iwata,et al.  Thermal Resistivity Changes in Electron-Irradiated Pyrolytic Graphite , 1975 .

[8]  B. T. Kelly,et al.  Physics of Graphite , 1981 .

[9]  Denis J. Evans,et al.  Homogeneous NEMD algorithm for thermal conductivity—Application of non-canonical linear response theory , 1982 .

[10]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[11]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[12]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[13]  M. Schoen,et al.  The shear viscosity of a Lennard-Jones fluid calculated by equilibrium molecular dynamics , 1985 .

[14]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[15]  L. Verlet,et al.  Molecular dynamics calculations of transport coefficients , 1987 .

[16]  G. Fischer Numerical data and functional relationships in science and technology , 1987 .

[17]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[18]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[19]  R. Souda,et al.  Surface phonon dispersion curves of graphite (0001) over the entire energy region , 1988 .

[20]  Wei,et al.  Thermal diffusivity of isotopically enriched 12C diamond. , 1990, Physical review. B, Condensed matter.

[21]  Oshima,et al.  Bond softening in monolayer graphite formed on transition-metal carbide surfaces. , 1990, Physical review. B, Condensed matter.

[22]  D. Cahill Thermal conductivity measurement from 30 to 750 K: the 3ω method , 1990 .

[23]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[24]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[25]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[26]  M. Dresselhaus,et al.  Topological defects in large fullerenes , 1992 .

[27]  William F. Banholzer,et al.  Thermal conductivity of isotopically modified single crystal diamond. , 1993 .

[28]  M. Dresselhaus,et al.  Phonon modes in carbon nanotubules , 1993 .

[29]  D. Evans,et al.  A generalized heat flow algorithm , 1994 .

[30]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[31]  Lattice thermal conductivity via homogeneous nonequilibrium molecular dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  M. Dresselhaus Carbon nanotubes , 1995 .

[33]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[34]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[35]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[36]  S. Louie,et al.  Heat capacity of carbon nanotubes , 1996 .

[37]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[38]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[39]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[40]  Susumu Saito,et al.  Effect of intertube coupling on the electronic structure of carbon nanotube ropes , 1998 .

[41]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[42]  Z. Pan,et al.  Linear specific heat of carbon nanotubes , 1999 .

[43]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[44]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[45]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[46]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[47]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[48]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[49]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[50]  J. Hone Phonons and Thermal Properties of Carbon Nanotubes , 2001 .