H∞ LPV Filtering for Linear Systems with Arbitrarily Time-varying Parameters in Polytopic Domains

In this paper, the problem of H∞ filtering for linear systems affected by arbitrarily time-varying parameters in polytopic domains is investigated. A linear parameter-varying filter which minimizes an upper bound to the H∞ estimation error performance is determined for both continuous and discrete-time cases. Different from other strategies in the literature, the filter design is accomplished by means of a convex optimization procedure and the time-varying parameters are supposed to affect all systems matrices. The LPV filter is obtained from the optimal solution of a convex linear matrix inequality problem formulated only in terms of the vertices of the polytope. There is no use of exhaustive gridding in the parameter space. Numerical examples illustrate the efficiency of the proposed approach

[1]  J.C. Geromel,et al.  H/sub 2/ and H/sub /spl infin// robust filtering for convex bounded uncertain systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  J. Levine,et al.  On fault-tolerant observers , 1989, Proceedings. ICCON IEEE International Conference on Control and Applications.

[3]  F. Kratz,et al.  Advanced gain scheduling techniques for the design of parameter-dependent observers , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[4]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[5]  Tetsuya Iwasaki,et al.  Robust performance analysis for systems with structured uncertainty , 1996 .

[6]  S. Jin,et al.  Robust H/sub /spl infin// filtering for polytopic uncertain systems via convex optimisation , 2001 .

[7]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[8]  K.M. Grigoriadis,et al.  Delay-Dependent H//sub/spl infin// Filtering for State-delayed LPV Systems , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[9]  E. Kaszkurewicz,et al.  Matrix diagonal stability in systems and computation , 1999 .

[10]  Christopher Martin,et al.  Robust filtering and prediction for linear systems with uncertain dynamics: A game-theoretic approach , 1983, 1982 21st IEEE Conference on Decision and Control.

[11]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[12]  Fan Wang,et al.  Robust steady-state filtering for systems with deterministic and stochastic uncertainties , 2003, IEEE Trans. Signal Process..

[13]  James Lam,et al.  Parameter-dependent filter design with guaranteed H-infinity performance , 2005 .

[14]  Uri Shaked,et al.  Robust minimum variance filtering , 1995, IEEE Trans. Signal Process..

[15]  J. Geromel,et al.  H/sub 2/ and H/sub /spl infin// robust filtering for discrete-time linear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[16]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[17]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[18]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[19]  Maurício C. de Oliveira,et al.  H[sub 2] and Hinfinity Robust Filtering for Discrete-Time Linear Systems , 2000, SIAM J. Control. Optim..

[20]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[21]  Srdjan S. Stankovic,et al.  Decentralized overlapping control of a platoon of vehicles , 2000, IEEE Trans. Control. Syst. Technol..

[22]  S. Bittanti,et al.  Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .

[23]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[24]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[25]  Pedro Luis Dias Peres,et al.  An LMI condition for the robust stability of uncertain continuous-time linear systems , 2002, IEEE Trans. Autom. Control..

[26]  Jian Liu,et al.  Reliable guaranteed variance filtering against sensor failures , 2003, IEEE Trans. Signal Process..

[27]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[28]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[29]  Pierre Apkarian,et al.  Gain-scheduled filtering for time-varying discrete systems , 2004, IEEE Transactions on Signal Processing.

[30]  Mario A. Rotea,et al.  Optimal realizations of finite wordlength digital filters and controllers , 1995 .

[31]  Maurício C. de Oliveira,et al.  H2 and H∞ robust filtering for convex bounded uncertain systems , 2001, IEEE Trans. Autom. Control..

[32]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  Karolos M. Grigoriadis,et al.  Delay-Dependent H ∞ Filtering for State-delayed LPV Systems , 2005 .

[34]  M. Sato Filter design for LPV systems using biquadratic Lyapunov functions , 2004, Proceedings of the 2004 American Control Conference.

[35]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  W. Xie H2 gain scheduled state feedback for LPV system with new LMI formulation , 2005 .