Graded hyponymy for compositional distributional semantics

The categorical compositional distributional model of natural language provides a conceptually motivated procedure to compute the meaning of a sentence, given its grammatical structure and the meanings of its words. This approach has outperformed other models in mainstream empirical language processing tasks, but lacks an effective model of lexical entailment. We address this shortcoming by exploiting the freedom in our abstract categorical framework to change our choice of semantic model. This allows us to describe hyponymy as a graded order on meanings, using models of partial information used in quantum computation. Quantum logic embeds in this graded order.

[1]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[2]  Robin Piedeleu,et al.  Ambiguity in Categorical Models of Meaning , 2014 .

[3]  Hugo Larochelle,et al.  Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality , 2015, CVSC.

[4]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[5]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[6]  Marco Baroni,et al.  Nouns are Vectors, Adjectives are Matrices: Representing Adjective-Noun Constructions in Semantic Space , 2010, EMNLP.

[7]  Esma Balkr,et al.  Using Density Matrices in a Compositional Distributional Model of Meaning , 2014 .

[8]  Joachim Lambek,et al.  Type Grammar Revisited , 1997, LACL.

[9]  Mirella Lapata,et al.  Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05) , 2005, ACL 2005.

[10]  Ido Dagan,et al.  The Third PASCAL Recognizing Textual Entailment Challenge , 2007, ACL-PASCAL@ACL.

[11]  Wiebke Wagner,et al.  Steven Bird, Ewan Klein and Edward Loper: Natural Language Processing with Python, Analyzing Text with the Natural Language Toolkit , 2010, Lang. Resour. Evaluation.

[12]  Keye Martin,et al.  A Partial Order on Classical and Quantum States , 2010 .

[13]  Christopher D. Manning,et al.  Natural Logic for Textual Inference , 2007, ACL-PASCAL@ACL.

[14]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[15]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[16]  Jimmy J. Lin,et al.  Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , 2013 .

[17]  Mehrnoosh Sadrzadeh,et al.  Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus , 2013, Ann. Pure Appl. Log..

[18]  Dimitri Kartsaklis,et al.  A Unified Sentence Space for Categorical Distributional-Compositional Semantics: Theory and Experiments , 2012, COLING.

[19]  Stephen Pulman Compositional distributional semantics with compact closed categories and Frobenius algebras , 2014 .

[20]  Christopher Potts,et al.  Recursive Neural Networks Can Learn Logical Semantics , 2014, CVSC.

[21]  Stephen Clark,et al.  Exploiting Image Generality for Lexical Entailment Detection , 2015, ACL.

[22]  Mehrnoosh Sadrzadeh,et al.  Distributional Sentence Entailment Using Density Matrices , 2015, TTCS.

[23]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[24]  Prakash Panangaden,et al.  Quantum weakest preconditions , 2005, Mathematical Structures in Computer Science.

[25]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[26]  Alessandro Lenci,et al.  Identifying hypernyms in distributional semantic spaces , 2012, *SEMEVAL.

[27]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[28]  Elham Kashefi,et al.  A Quantum-Theoretic Approach to Distributional Semantics , 2013, NAACL.

[29]  Dimitri Kartsaklis,et al.  Verb Phrase Ellipsis using Frobenius Algebras in Categorical Compositional Distributional Semantics , 2016 .

[30]  Dimitri Kartsaklis,et al.  Sentence entailment in compositional distributional semantics , 2015, Annals of Mathematics and Artificial Intelligence.

[31]  C. J. van Rijsbergen,et al.  The geometry of information retrieval , 2004 .

[32]  Raffaella Bernardi,et al.  Entailment above the word level in distributional semantics , 2012, EACL.

[33]  Anne Preller,et al.  Bell States and Negative Sentences in the Distributed Model of Meaning , 2011, Electron. Notes Theor. Comput. Sci..

[34]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[35]  Mehrnoosh Sadrzadeh,et al.  A generalised quantifier theory of natural language in categorical compositional distributional semantics with bialgebras , 2016, Mathematical Structures in Computer Science.

[36]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[37]  Daoud Clarke Context-theoretic Semantics for Natural Language: an Overview , 2009 .

[38]  Ido Dagan,et al.  Directional distributional similarity for lexical inference , 2010, Natural Language Engineering.

[39]  Mehrnoosh Sadrzadeh,et al.  Multi-Step Regression Learning for Compositional Distributional Semantics , 2013, IWCS.

[40]  Laura Rimell,et al.  Distributional Lexical Entailment by Topic Coherence , 2014, EACL.

[41]  S. Peters,et al.  Word Vectors and Quantum Logic Experiments with negation and disjunction , 2003 .

[42]  David J. Weir,et al.  Characterising Measures of Lexical Distributional Similarity , 2004, COLING.

[43]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[44]  Dimitri Kartsaklis,et al.  Compositional distributional semantics with compact closed categories and Frobenius algebras , 2015, ArXiv.

[45]  Ido Dagan,et al.  The Distributional Inclusion Hypotheses and Lexical Entailment , 2005, ACL.