On a regularized Levenberg–Marquardt method for solving nonlinear inverse problems

We consider a regularized Levenberg–Marquardt method for solving nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate the iteration. Under certain conditions, we prove the convergence of the method and obtain the order optimal convergence rates when the exact solution satisfies suitable source-wise representations.

[1]  A. Bakushinskii The problem of the convergence of the iteratively regularized Gauss-Newton method , 1992 .

[2]  Charles W. Groetsch,et al.  Stable Approximate Evaluation of Unbounded Operators , 2006 .

[3]  M. Hanke A regularizing Levenberg - Marquardt scheme, with applications to inverse groundwater filtration problems , 1997 .

[4]  Martin Hanke,et al.  The regularizing Levenberg-Marquardt scheme is of optimal order , 2010 .

[5]  Andreas Rieder,et al.  On the regularization of nonlinear ill-posed problems via inexact Newton iterations , 1999 .

[6]  Jin Qi-nian,et al.  On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems , 2000, Math. Comput..

[7]  Jin Qi-nian,et al.  On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems , 1999 .

[8]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[9]  Andreas Rieder,et al.  On convergence rates of inexact Newton regularizations , 2001, Numerische Mathematik.

[10]  Qinian Jin,et al.  On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems , 1999, Numerische Mathematik.

[11]  Qinian Jin,et al.  On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems , 2008, Numerische Mathematik.

[12]  M. Hanke,et al.  Nonstationary Iterated Tikhonov Regularization , 1998 .

[13]  M. Hanke,et al.  A convergence analysis of the Landweber iteration for nonlinear ill-posed problems , 1995 .