Unbiased simulation of stochastic differential equations using parametrix expansions
暂无分享,去创建一个
[1] Vlad Bally,et al. A probabilistic interpretation of the parametrix method. , 2015, 1510.06909.
[2] Rainer Avikainen. On irregular functionals of SDEs and the Euler scheme , 2009, Finance Stochastics.
[3] Ward Whitt,et al. The Asymptotic Efficiency of Simulation Estimators , 1992, Oper. Res..
[4] Don McLeish,et al. A general method for debiasing a Monte Carlo estimator , 2010, Monte Carlo Methods Appl..
[5] G. Roberts,et al. Retrospective exact simulation of diffusion sample paths with applications , 2006 .
[6] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[7] Miklós Rásonyi,et al. A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients , 2011 .
[8] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[9] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[10] D. W. Stroock,et al. Multidimensional Diffusion Processes , 1979 .
[11] Peter W. Glynn,et al. A new approach to unbiased estimation for SDE's , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[12] Mark Broadie,et al. Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..
[13] P. Glynn. Randomized Estimators for Time Integrals. , 1983 .
[14] Peter W. Glynn,et al. Unbiased Estimation with Square Root Convergence for SDE Models , 2015, Oper. Res..
[15] Bin Chen,et al. A LOW-BIAS SIMULATION SCHEME FOR THE SABR STOCHASTIC VOLATILITY MODEL , 2012 .
[16] M. Giles. Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .
[17] M. Giles,et al. Antithetic Multilevel Monte Carlo Estimation for Multidimensional SDEs , 2013 .
[18] Denis Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..