AFRICAN BUFFALO OPTIMIZATION

This is an introductory paper to the newly-designed African Buffalo Optimization (ABO) algorithm for solving combinatorial and other optimization problems. The algorithm is inspired by the behavior of African buffalos, a species of wild cows known for their extensive migrant lifestyle. This paper presents an overview of major metaheuristic algorithms with the aim of providing a basis for the development of the African Buffalo Optimization algorithm which is a nature-inspired, population-based metaheuristic algorithm. Experimental results obtained from applying the novel ABO to solve a number of benchmark global optimization test functions as well as some symmetric and asymmetric Traveling Salesman’s Problems when compared to the results obtained from using other popular optimization methods show that the African Buffalo Optimization is a worthy addition to the growing number of swarm intelligence optimization techniques. Keywords: Graphite; African Buffalo Optimization; Metaheuristics; population-based; global optimization; Traveling Salesman’s Problem.

[1]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[2]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[3]  Deepti Rani,et al.  Genetic Algorithms and Their Applications to Water Resources Systems , 2013 .

[4]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[5]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[6]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[7]  Kevin Hapeshi,et al.  A Review of Nature-Inspired Algorithms , 2010 .

[8]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[9]  Pavol Návrat,et al.  Full Text Search Engine as Scalable k-Nearest Neighbor Recommendation System , 2010, IFIP AI.

[10]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[11]  Georgios Dounias,et al.  Honey bees mating optimization algorithm for the Euclidean traveling salesman problem , 2011, Inf. Sci..

[12]  Garret N. Vanderplaats,et al.  Multidiscipline Design Optimization , 1988 .

[13]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[14]  Adi Ben-Israel A Newton-Raphson method for the solution of systems of equations , 1966 .

[15]  Sigurdur Olafsson,et al.  Chapter 21 Metaheuristics , 2006, Simulation.

[16]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[17]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[18]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[19]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[21]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[22]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[23]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[24]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .

[25]  Dervis Karaboga,et al.  A survey: algorithms simulating bee swarm intelligence , 2009, Artificial Intelligence Review.

[26]  M. J. Rijckaert,et al.  Heuristic for the Asymmetric Travelling Salesman Problem , 1978 .

[27]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[28]  Eligius M. T. Hendrix,et al.  On the Investigation of Stochastic Global Optimization Algorithms , 2005, J. Glob. Optim..

[29]  Ping Shum,et al.  A Staged Continuous Tabu Search Algorithm for the Global Optimization and its Applications to the Design of Fiber Bragg Gratings , 2005, Comput. Optim. Appl..

[30]  Gerhard Venter,et al.  Review of optimization techniques , 2010 .

[31]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[32]  D. Wilson,et al.  Altruism And Organism: Disentangling The Themes Of Multilevel Selection Theory , 1997, The American Naturalist.

[33]  Afshin Ghanbarzadeh,et al.  the Bees Algorithm: a novel optimisation tool , 2007 .

[34]  Edward J. Wegman,et al.  Roadmap for Optimization , 2009 .

[35]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[36]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[37]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[38]  D. Zinner,et al.  To follow or not to follow: decision making and leadership during the morning departure in chacma baboons , 2008, Animal Behaviour.

[39]  Herbert H. T. Prins,et al.  Ecology and behaviour of the African buffalo : social inequality and decision making , 1996 .