Visualising Information from an Immensely Scalable Monitoring System

Recent research on the development of massively scalable monitoring systems has, until now, focused on the storage and retrieval of information. Most existing monitoring tools use graphs to display monitoring information, but graphs have limited scalability. In this report, we propose a scalable visualisation tool specifically aimed at visualising information from a large-scale monitoring system. General techniques and methods for visualising massive multidimensional data-sets are discussed, and then applied to the design of the visualisation. Two separate visualisations, the Node-map and the Metric-map, are developed and integrated to be used as a complete Visualisation Tool. The Visualisation Tool is then subjected to a critical evaluation, and is evaluated by two expert users. It is concluded that the Visualisation Tool successfully provides an overall view of a large fleet of computers, and facilitates the identification of problems within that fleet. The key contributors to the success of the Visualisation Tool are found to be the interaction between the Node-map and the Metric-map, and the ability to visualise historic information.

[1]  David E. Culler,et al.  The ganglia distributed monitoring system: design, implementation, and experience , 2004, Parallel Comput..

[2]  Helen Wright,et al.  Introduction to scientific visualization , 2006 .

[3]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[4]  Pat Hanrahan,et al.  Polaris: a system for query, analysis and visualization of multi-dimensional relational databases , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[5]  Heidrun Schumann,et al.  A scalable framework for information visualization , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[6]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[7]  Eric Anderson,et al.  Extensible, Scalable Monitoring for Clusters of Computers , 1997, LISA.

[8]  Cho-Li Wang,et al.  ClusterProbe: an open, flexible and scalable cluster monitoring tool , 1999, ICWC 99. IEEE Computer Society International Workshop on Cluster Computing.

[9]  Thomas Ertl,et al.  Scientific Visualization: The Visual Extraction of Knowledge from Data (Mathematics and Visualization) , 2005 .

[10]  Robbert van Renesse,et al.  Astrolabe: A robust and scalable technology for distributed system monitoring, management, and data mining , 2003, TOCS.

[11]  Daniel A. Keim,et al.  An Automated Approach for the Optimization of Pixel-Based Visualizations , 2007, Inf. Vis..

[12]  David E. Culler,et al.  Wide area cluster monitoring with Ganglia , 2003, 2003 Proceedings IEEE International Conference on Cluster Computing.

[13]  O. Rind,et al.  Software Scalability Issues in Large Clusters , 2003 .

[14]  Heidrun Schumann,et al.  Scalable Pixel-based Visual Interfaces: Challenges and Solutions , 2006, Tenth International Conference on Information Visualisation (IV'06).

[15]  Jade Goldstein-Stewart,et al.  Using aggregation and dynamic queries for exploring large data sets , 1994, CHI.

[16]  Matthew O. Ward,et al.  A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization , 2002, Inf. Vis..

[17]  Ann C. Gentile,et al.  OVIS: a tool for intelligent, real-time monitoring of computational clusters , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

[18]  Robbert van Renesse,et al.  Scalable Management and Data Mining Using Astrolabe , 2002, IPTPS.

[19]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[20]  Bert J. Debusschere,et al.  Ovis-2: A robust distributed architecture for scalable RAS , 2008, 2008 IEEE International Symposium on Parallel and Distributed Processing.

[21]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[22]  Daniel Asimov,et al.  The grand tour: a tool for viewing multidimensional data , 1985 .