Turbulent Flow Simulations with the High-Order DG Solver Aghora

This paper presents details of the solver Aghora for the simulation of unsteady compressible turbulent flows. Different modelling levels are used: Reynolds averaged Navier-Stokes equations coupled with turbulence transport equations, variational multiscale formulation of large-eddy simulation, and direct numerical simulation. The space discretization is based on a high-order discontinuous Galerkin method with representation of curved boundaries. High-order explicit and implicit Runge-Kutta methods are used for the time integration. The performance of the solver will be assessed in various examples of compressible turbulent ow numerical simulation in three space dimensions.

[1]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[2]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[3]  S. Scott Collis,et al.  Discontinuous Galerkin Methods for Turbulence Simulation , 2002 .

[4]  Alfredo Pinelli,et al.  The role of the forcing term in the large eddy simulation of equilibrium channel flow , 1990 .

[5]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[6]  M. Lesieur,et al.  Spectral large-eddy simulation of isotropic and stably stratified turbulence , 1992, Journal of Fluid Mechanics.

[7]  Validation of code using turbulence model applied to three-dimensional transonic channel , 1995 .

[8]  Endre Süli,et al.  hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..

[9]  Ralf Hartmann,et al.  Higher‐order and adaptive discontinuous Galerkin methods with shock‐capturing applied to transonic turbulent delta wing flow , 2013 .

[10]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[11]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[12]  Wolfgang Rodi,et al.  Large eddy simulation of the flow over periodic hills , 2000 .

[13]  J. Dunham CFD VALIDATION FOR PROPULSION SYSTEM COMPONENTS , 1998 .

[14]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[15]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[16]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[17]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[18]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[19]  Rupak Biswas,et al.  High performance computing using MPI and OpenMP on multi-core parallel systems , 2011, Parallel Comput..

[20]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[21]  I. Doležel,et al.  Higher-Order Finite Element Methods , 2003 .

[22]  W. Rodi,et al.  ERCOFTAC Workshop on Data Bases and Testing of Calculation Methods for Turbulent Flows , 1995 .

[23]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[24]  Bruno Després,et al.  CFL Condition and Boundary Conditions for DGM Approximation of Convection-Diffusion , 2006, SIAM J. Numer. Anal..

[25]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[26]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[27]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[28]  Marc Brachet,et al.  Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows , 1992 .

[29]  L. Reid,et al.  Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor , 1978 .

[30]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[31]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[32]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[33]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[34]  Ralf Hartmann,et al.  An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[35]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[36]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[37]  Julien Langou,et al.  Accelerating scientific computations with mixed precision algorithms , 2008, Comput. Phys. Commun..

[38]  Norbert Kroll,et al.  ADIGMA: A European Project on the Development of Adaptive Higher Order Variational Methods for Aerospace Applications , 2010 .

[39]  Samuel Scott Collis,et al.  The Local Variational Multiscale Method for Turbulence Simulation. , 2005 .

[40]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[41]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[42]  Manuel V. Heitor,et al.  Wake flows behind two-dimensional model hills , 1993 .

[43]  Michael Manhart,et al.  Flow over periodic hills – Numerical and experimental study in a wide range of Reynolds numbers , 2009 .

[44]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[45]  Guy Chavent,et al.  The local projection P 0 − P 1 -discontinuous-Galerkin finite element method for scalar conservation laws , 2009 .

[46]  K. G. Budden The basic equations , 1985 .

[47]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[48]  Rainald Löhner,et al.  Handling tens of thousands of cores with industrial/legacy codes: Approaches, implementation and timings , 2013 .

[49]  A. Kværnø,et al.  Norges Teknisk-naturvitenskapelige Universitet Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage , 2022 .

[50]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[51]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[52]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..