Quasi-Randomness and Algorithmic Regularity for Graphs with General Degree Distributions

We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose of the concept of quasi-randomness is to express how much a given graph “resembles” a random one. Moreover, a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding quasi-randomness, we present a new spectral characterization of low discrepancy, which extends to sparse graphs. Concerning regular partitions, we introduce a concept of regularity that takes into account vertex weights, and show that if $G=(V,E)$ satisfies a certain boundedness condition, then $G$ admits a regular partition. In addition, building on the work of Alon and Naor [Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), Chicago, IL, ACM, New York, 2004, pp. 72-80], we provide an algorithm that computes a regular partition of a given (possibly sparse) graph $G$ in polynomial time. As an application, we present a polynomial time approximation scheme for MAX CUT on (sparse) graphs without “dense spots.”

[1]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[2]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[3]  B. Bollobás,et al.  Graphs and Hermitian matrices: discrepancy and singular values , 2004, math/0404559.

[4]  Yoshiharu Kohayakawa,et al.  An Optimal Algorithm for Checking Regularity , 2003, SIAM J. Comput..

[5]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[6]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[7]  S. Butler Using discrepancy to control singular values for nonnegative matrices , 2006 .

[8]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[9]  Richard Bellman,et al.  Introduction to matrix analysis (2nd ed.) , 1997 .

[10]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[11]  Fan Chung Graham,et al.  Quasi‐random graphs with given degree sequences , 2008, Random Struct. Algorithms.

[12]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[13]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[14]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[15]  Stefanie Gerke,et al.  A characterization for sparse -regular pairs. , 2007 .

[16]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[17]  Yoshiharu Kohayakawa,et al.  An optimal algorithm for checking regularity: (extended abstract) , 2002, SODA '02.

[18]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[19]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[20]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[21]  Luca Trevisan,et al.  Gadgets, Approximation, and Linear Programming , 2000, SIAM J. Comput..

[22]  R. Graham,et al.  Quasi-random graphs with given degree sequences , 2008 .

[23]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[24]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[25]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[26]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[27]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[28]  N. Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gaps , 2003 .