Flake-shell capsules: adjustable inorganic structures.

Structure-adjustable capsules are fabricated from inorganic components by using a self-template dissolution-regrowth mechanism to give flake-shell silica microcapsules. The capsules shrink under thermal stimulus and their structures can be adjusted by treatment at different pH values. Tuning of shell pore diameters leads to tailored drug release over prolonged periods.

[1]  M. Coppens,et al.  Synthesis and Characterization of Stable Hollow Ti−Silica Microspheres with a Mesoporous Shell , 2005 .

[2]  P. Ortoleva,et al.  A mesoscopic model of nucleation and Ostwald ripening/stepping: Application to the silica polymorph system , 2000 .

[3]  R. Ma,et al.  Layer-by-Layer Assembly of TaO3 Nanosheet/Polycation Composite Nanostructures: Multilayer Film, Hollow Sphere, and Its Photocatalytic Activity for Hydrogen Evolution , 2010 .

[4]  E. Voest,et al.  Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review. , 2001, European journal of pharmacology.

[5]  A. Maitra,et al.  Biodegradable nanoparticles as a sustained release system for the antigens/allergens of Aspergillus fumigatus: preparation and characterisation , 1997 .

[6]  C. Nathan,et al.  Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Yada,et al.  Synthesis of silica hollow nanoparticles templated by polymeric micelle with core-shell-corona structure. , 2007, Journal of the American Chemical Society.

[8]  Hao Yan,et al.  Mechanism of a self-templating synthesis of monodispersed hollow silica nanospheres with tunable size and shell thickness. , 2007, Chemical communications.

[9]  C. Li,et al.  Hollow ferrocenyl coordination polymer microspheres with micropores in shells prepared by Ostwald ripening. , 2010, Angewandte Chemie.

[10]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[11]  M. Comotti,et al.  High-temperature-stable catalysts by hollow sphere encapsulation. , 2006, Angewandte Chemie.

[12]  Gleb B. Sukhorukov,et al.  Stepwise Polyelectrolyte Assembly on Particle Surfaces: a Novel Approach to Colloid Design , 1998 .

[13]  T. Hyeon,et al.  Synthesis and characterization of spherical carbon and polymer capsules with hollow macroporous core and mesoporous shell structures , 2003 .

[14]  S. Raghavan,et al.  Silica Hollow Spheres by Templating of Catanionic Vesicles , 2003 .

[15]  Jianlin Shi,et al.  The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. , 2010, Biomaterials.

[16]  Katsuhiko Ariga,et al.  Stimuli-free auto-modulated material release from mesoporous nanocompartment films. , 2008, Journal of the American Chemical Society.

[17]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[18]  Yi-sheng Liu,et al.  A Self-Templated Route to Hollow Silica Microspheres , 2009 .

[19]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[20]  S. Goodenough,et al.  Estrogen-induced cell signalling in a cellular model of Alzheimer’s disease , 2003, The Journal of Steroid Biochemistry and Molecular Biology.

[21]  D. Trump,et al.  Zoladex: a sustained-release, monthly luteinizing hormone-releasing hormone analogue for the treatment of advanced prostate cancer. , 1987, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Katsuhiko Ariga,et al.  Nanoarchitectonics for mesoporous materials , 2012 .

[23]  S. Aloni,et al.  Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. , 2008, Angewandte Chemie.

[24]  C. Behl Estrogen can protect neurons: modes of action , 2002, The Journal of Steroid Biochemistry and Molecular Biology.

[25]  L. Gama,et al.  Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. , 2007, Cancer research.

[26]  Fei Liu,et al.  Recent developments in the chemical synthesis of inorganic porous capsules , 2009 .

[27]  H. Zeng,et al.  Multifunctional Roles of TiO2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO2−TiO2−Polyaniline System , 2009 .

[28]  Junbai Li,et al.  Capsules with silver nanoparticle enrichment subdomains and their antimicrobial properties. , 2010, Chemistry, an Asian journal.

[29]  J. Jung,et al.  Detection of CuII by a Chemodosimeter‐Functionalized Monolayer on Mesoporous Silica , 2008 .

[30]  M. C. Stuart,et al.  Surface ionization state and nanoscale chemical composition of UV-irradiated poly(dimethylsiloxane) probed by chemical force microscopy, force titration, and electrokinetic measurements. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[31]  C. Brinker,et al.  Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of L-methionine as a candidate drug cargo. , 2010, Chemical communications.

[32]  Michael J. McShane,et al.  Microcapsules as optical biosensors , 2010 .

[33]  K. Ariga,et al.  Hierarchic Template Approach for Synthesis of Silica Nanocapsules with Tuned Shell Thickness , 2011 .

[34]  Frank Caruso,et al.  Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly† , 2008 .

[35]  Jane F. Bertone,et al.  A lost-wax approach to monodisperse colloids and their crystals. , 2001, Science.

[36]  D. Luo,et al.  Nonviral gene delivery: Thinking of silica , 2006, Gene Therapy.

[37]  K. B. Yoon,et al.  Fabrication of bimodal porous silicate with silicalite-1 core/mesoporous shell structures and synthesis of nonspherical carbon and silica nanocases with hollow core/mesoporous shell structures. , 2005, The journal of physical chemistry. B.

[38]  Hyesung Jeon,et al.  Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. , 2011, ACS nano.

[39]  A. R. Bausch,et al.  Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles , 2002, Science.

[40]  Taeghwan Hyeon,et al.  Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures , 2002 .

[41]  Katsuhiko Ariga,et al.  Mechanical Control of Nanomaterials and Nanosystems , 2012, Advanced materials.

[42]  B. Liberelle,et al.  Stability of silanols and grafted alkylsilane monolayers on plasma-activated mica surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[43]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[44]  F. Holsboer,et al.  17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. , 1995, Biochemical and biophysical research communications.

[45]  R. Martínez‐Máñez,et al.  pH- and photo-switched release of guest molecules from mesoporous silica supports. , 2009, Journal of the American Chemical Society.

[46]  Yuliang Wang,et al.  Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles , 2005 .

[47]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[48]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[49]  Johan U. Lind,et al.  Synthesis of Hollow Silica and Titania Nanospheres , 2008 .

[50]  G. Decher,et al.  From "nano-bags" to "micro-pouches". Understanding and tweaking flocculation-based processes for the preparation of new nanoparticle-composites. , 2008, Nano letters.

[51]  B. Liu,et al.  Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. , 2005, Small.

[52]  F. Bertin,et al.  Infrared spectroscopic ellipsometry for residual water detection in annealed sol–gel thin layers , 1998 .

[53]  Frank Caruso,et al.  Layer-by-layer-assembled capsules and films for therapeutic delivery. , 2010, Small.

[54]  M. Tabrizian,et al.  Modulating the release kinetics through the control of the permeability of the layer-by-layer assembly: a review , 2009, Expert opinion on drug delivery.

[55]  T. Hyeon,et al.  Synthesis of Nanorattles Composed of Gold Nanoparticles Encapsulated in Mesoporous Carbon and Polymer Shells , 2002 .

[56]  Guicun Li,et al.  Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core-shell microspheres with tunable chamber structures via a self-template method. , 2008, Chemical communications.

[57]  Younan Xia,et al.  Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[58]  Qiang He,et al.  Adenosine triphosphate biosynthesis catalyzed by FoF1 ATP synthase assembled in polymer microcapsules. , 2007, Angewandte Chemie.

[59]  M. McGuire,et al.  ATR-FTIR observations of water structure in colloidal silica: implications for the hydration force mechanism. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[60]  Yahong Zhang,et al.  General Method for the Fabrication of Hollow Microcapsules with Adjustable Shell Compositions , 2005 .

[61]  Chad A. Mirkin,et al.  Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. , 2001, Angewandte Chemie.

[62]  Yugang Sun,et al.  A self-templated approach to TiO2 microcapsules. , 2007, Nano letters.

[63]  Katsuhiko Ariga,et al.  Open-mouthed metallic microcapsules: exploring performance improvements at agglomeration-free interiors. , 2010, Journal of the American Chemical Society.

[64]  C. Behl,et al.  Neuroprotective activities of estrogen: An update , 2000, Journal of neurocytology.

[65]  F. Babonneau,et al.  Order−Disorder Transitions and Evolution of Silica Structure in Self-Assembled Mesostructured Silica Films Studied through FTIR Spectroscopy , 2003 .

[66]  W. Cai,et al.  One-pot synthesis of nanotube-based hierarchical copper silicate hollow spheres. , 2008, Chemical communications.

[67]  Jean Paul Remon,et al.  Polymeric multilayer capsules in drug delivery. , 2010, Angewandte Chemie.