Life cycle assessment of natural building materials: the role of carbonation, mixture components and transport in the environmental impacts of hempcrete blocks

[1]  E. Lifshin X-ray Characterization of Materials , 1999 .

[2]  J. Warren Dolomite: occurrence, evolution and economically important associations , 2000 .

[3]  Muhammad Pervaiz,et al.  Carbon storage potential in natural fiber composites , 2003 .

[4]  B. Lagerblad Carbon Dioxide Uptake during Concrete Life Cycle - State of the Art , 2005 .

[5]  Hans-Jörg Althaus,et al.  The ecoinvent Database: Overview and Methodological Framework (7 pp) , 2005 .

[6]  Pushpam Kumar Agriculture (Chapter8) in IPCC, 2007: Climate change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[7]  Tom Woolley,et al.  Hemp Lime Construction: a guide to building with hemp lime composites , 2008 .

[8]  H. Haberl,et al.  Growth in global materials use, GDP and population during the 20th century , 2009 .

[9]  Giovanni Andrea Blengini,et al.  The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings , 2010 .

[10]  Kenneth Ip,et al.  Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK , 2012 .

[11]  Giovanni Dotelli,et al.  Life cycle assessment of refurbishment strategies for historic buildings , 2013 .

[12]  Giovanni Dotelli,et al.  Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. , 2013, Environmental science & technology.

[13]  T. Nemecek,et al.  Overview and methodology: Data quality guideline for the ecoinvent database version 3 , 2013 .

[14]  A. Shea,et al.  Building Materials in the Operational Phase , 2013 .

[15]  Andrew C. Heath,et al.  Minimising the global warming potential of clay based geopolymers , 2014 .

[16]  Luisa F. Cabeza,et al.  Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review , 2014 .

[17]  Fernando Pacheco-Torgal,et al.  Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020 , 2014 .

[18]  Florence Collet,et al.  Thermal conductivity of hemp concretes: Variation with formulation, density and water content , 2014 .

[19]  Florence Collet,et al.  LIFE CYCLE ASSESSMENT OF A HEMP CONCRETE WALL: IMPACT OF THICKNESS AND COATING. , 2014 .

[20]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[21]  Sara Pavia,et al.  Moisture transfer and thermal properties of hemp–lime concretes , 2014 .

[22]  Giovanni Dotelli,et al.  Environmental impacts of natural and conventional building materials: a case study on earth plasters , 2014 .

[23]  Devotha Nyambo,et al.  Applications: A Review , 2014 .

[24]  Holger Wallbaum,et al.  Environmental product declarations entering the building sector: critical reflections based on 5 to 10 years experience in different European countries , 2015, The International Journal of Life Cycle Assessment.

[25]  K. Paine,et al.  The environmental credentials of hydraulic lime-pozzolan concretes , 2015 .

[26]  Agata Lo Giudice,et al.  Energy and environmental assessment of industrial hemp for building applications: A review , 2015 .

[27]  Mike Lawrence Reducing the environmental impact of construction by using renewable materials , 2015 .

[28]  Thomas Lützkendorf,et al.  Cumulative energy demand in LCA: the energy harvested approach , 2015, The International Journal of Life Cycle Assessment.

[29]  M. T. Knudsen,et al.  A comparison of Land Use Change models: challenges and future developments , 2016 .

[30]  Jean-Emmanuel Aubert,et al.  Plant aggregates and fibers in earth construction materials: A review , 2016 .

[31]  André Stephan,et al.  Evaluating the life cycle energy benefits of energy efficiency regulations for buildings , 2016 .

[32]  Warda Ashraf,et al.  Carbonation of cement-based materials: Challenges and opportunities , 2016 .