Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning

A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference learning for prediction of input sequences. Using a biophysical model of a cortical neuron, we show that a temporal difference rule used in conjunction with dendritic backpropagating action potentials reproduces the temporally asymmetric window of Hebbian plasticity observed physiologically. Furthermore, the size and shape of the window vary with the distance of the synapse from the soma. Using a simple example, we show how a spike-timing-based temporal difference learning rule can allow a network of neocortical neurons to predict an input a few milliseconds before the input's expected arrival.

[1]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[2]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[3]  B. Kosco Differential Hebbian learning , 1987 .

[4]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[5]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[6]  Michael I. Jordan Attractor dynamics and parallelism in a connectionist sequential machine , 1990 .

[7]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[8]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[9]  T. Sejnowski,et al.  The predictive brain: temporal coincidence and temporal order in synaptic learning mechanisms. , 1994, Learning & memory.

[10]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[11]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  J G Daugman,et al.  Demodulation, predictive coding, and spatial vision. , 1995, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[16]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[17]  Geoffrey E. Hinton,et al.  Varieties of Helmholtz Machine , 1996, Neural Networks.

[18]  T. Sejnowski,et al.  The Monetary Transmission Mechanism in the United Kingdom: Pass-Through and Policy Rules. manuscript , 1996 .

[19]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[20]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[21]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[22]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[23]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[24]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[26]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[27]  H. Barlow Cerebral predictions. , 1998, Perception.

[28]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Sen Song,et al.  Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability , 1998, NIPS.

[30]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[31]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[32]  D. Linden The Return of the Spike Postsynaptic Action Potentials and the Induction of LTP and LTD , 1999, Neuron.

[33]  N. Emptage Calcium on the Up Supralinear Calcium Signaling in Central Neurons , 1999, Neuron.

[34]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[35]  T. Sejnowski,et al.  The Book of Hebb , 1999, Neuron.

[36]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[37]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[38]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[39]  Wayne Carl Westerman,et al.  Antidromic Spikes Drive Hebbian Learning in an Artificial Dendritic Tree , 1999 .

[40]  Rajesh P. N. Rao,et al.  Predictive Sequence Learning in Recurrent Neocortical Circuits , 1999, NIPS.

[41]  Kenji Doya,et al.  Reinforcement Learning in Continuous Time and Space , 2000, Neural Computation.

[42]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[43]  T. Sejnowski,et al.  Natural patterns of activity and long-term synaptic plasticity , 2000, Current Opinion in Neurobiology.

[44]  M. Wilson,et al.  From hippocampus to V 1 : E ! ect of LTP on spatio-temporal dynamics of receptive " elds , 2000 .

[45]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[46]  Guo-Qiang Bi,et al.  Synaptic modification in neural circuits: a timely action. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[47]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[48]  Silvia Scarpetta,et al.  Hebbian Imprinting and Retrieval in Oscillatory Neural Networks , 2001, Neural Computation.