Visual robot localization using compact binary landmarks

This paper is concerned with the problem of mobile robot localization using a novel compact representation of visual landmarks. With recent progress in lifelong map-learning as well as in information sharing networks, compact representation of a large-size landmark database has become crucial. In this paper, we propose a compact binary code (e.g. 32bit code) landmark representation by employing the semantic hashing technique from web-scale image retrieval. We show how well such a binary representation achieves compactness of a landmark database while maintaining efficiency of the localization system. In our contribution, we investigate the cost-performance, the semantic gap, the saliency evaluation using the presented techniques as well as challenge to further reduce the resources (#bits) per landmark. Experiments using a high-speed car-like robot show promising results.

[1]  Geoffrey E. Hinton,et al.  Semantic hashing , 2009, Int. J. Approx. Reason..

[2]  James R. Bergen,et al.  Visual odometry for ground vehicle applications , 2006, J. Field Robotics.

[3]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[4]  Robotic Sensor Networks: Principles and Practice , 2008 .

[5]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[6]  Ben J. A. Kröse,et al.  Auxiliary particle filter robot localization from high-dimensional sensor observations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  Antonio Torralba,et al.  Small codes and large image databases for recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[9]  Richard Szeliski,et al.  City-Scale Location Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Paul Newman,et al.  Fast Probabilistic Labeling of City Maps , 2008, Robotics: Science and Systems.

[11]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[14]  Sebastian Thrun,et al.  Decentralized Sensor Fusion with Distributed Particle Filters , 2002, UAI.

[15]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[16]  Jean-Arcady Meyer,et al.  Real-time visual loop-closure detection , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[18]  Kanji Tanaka,et al.  A scalable algorithm for monte carlo localization using an incremental E2LSH-database of high dimensional features , 2008, 2008 IEEE International Conference on Robotics and Automation.

[19]  Cordelia Schmid,et al.  Evaluation of GIST descriptors for web-scale image search , 2009, CIVR '09.

[20]  Ian D. Reid,et al.  Real-Time SLAM Relocalisation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[21]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[23]  Alexei A. Efros,et al.  IM2GPS: estimating geographic information from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Tom Duckett,et al.  Dynamic Maps for Long-Term Operation of Mobile Service Robots , 2005, Robotics: Science and Systems.

[25]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[26]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[27]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Ali Shokoufandeh,et al.  Landmark Selection for Vision-Based Navigation , 2006, IEEE Trans. Robotics.

[30]  Kanji Tanaka,et al.  LSH-RANSAC: An incremental scheme for scalable localization , 2009, 2009 IEEE International Conference on Robotics and Automation.

[31]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[32]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[33]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.