Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides.

Monolithic integration of Al2O3:Er3+ amplifier technology with passive silicon-on-insulator waveguides is demonstrated. A signal enhancement of >7 dB at 1533 nm wavelength is obtained. The straightforward wafer-scale fabrication process, which includes reactive co-sputtering and subsequent reactive ion etching, allows for parallel integration of multiple amplifier and laser sections with silicon or other photonic circuits on a chip.

[1]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[2]  E. Sleeckx,et al.  Highly efficient grating coupler between optical fiber and silicon photonic circuit , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[3]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[4]  Philippe Regreny,et al.  III-V/Si photonics by die-to-wafer bonding , 2007 .

[5]  M. Pollnau,et al.  Reliable Low-Cost Fabrication of Low-Loss $\hbox{Al}_{2}\hbox{O} _{3}{:}\hbox{Er}^{3+}$ Waveguides With 5.4-dB Optical Gain , 2009, IEEE Journal of Quantum Electronics.

[6]  G. Eisenstein Semiconductor optical amplifiers , 1989, IEEE Circuits and Devices Magazine.

[7]  M. Kamp,et al.  DFB laser diodes in the wavelength range from 760 nm to 2.5 microm. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  M. Pollnau,et al.  Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching , 2007 .

[9]  M. Pollnau,et al.  Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. , 2010, Optics letters.

[10]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[11]  J. Bradley,et al.  Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity. , 2010, Optics letters.

[12]  C. Roeloffzen,et al.  Design and Application of Compact and Highly Tolerant Polarization-Independent Waveguides , 2007, Journal of Lightwave Technology.

[13]  M. Sorel,et al.  Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist , 2008 .

[14]  M. Nakazawa,et al.  1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator , 2000 .

[15]  Remco Stoffer,et al.  Integrated Al $_2$ O $_3$ :Er $^{3+}$ Zero-Loss Optical Amplifier and Power Splitter With 40-nm Bandwidth , 2010 .

[16]  M. Lipson,et al.  Electrically driven silicon resonant light emitting device based on slot-waveguide. , 2005, Optics express.

[17]  A. Leinse,et al.  Box-Shaped Dielectric Waveguides: A New Concept in Integrated Optics? , 2007, Journal of Lightwave Technology.

[18]  J. Bowers,et al.  Hybrid silicon evanescent devices , 2007 .

[19]  Jean-Claude Simon,et al.  170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. , 2009, Optics express.

[20]  S. Blaize,et al.  Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate , 2003, IEEE Photonics Technology Letters.

[21]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[22]  Kazumi Wada,et al.  High responsitivity near infrared Ge photodetectors integrated on Si , 1999 .

[24]  Michael J. Connelly,et al.  Semiconductor Optical Amplifiers , 2002 .

[25]  G. Roelkens,et al.  Efficient silicon-on-insulator fiber coupler fabricated using 248-nm-deep UV lithography , 2005, IEEE Photonics Technology Letters.

[26]  Dimitri Geskus,et al.  Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon , 2010 .

[27]  Gian-Luca Bona,et al.  SiON high-refractive-index waveguide and planar lightwave circuits , 2003, IBM J. Res. Dev..

[28]  L.H. Spiekman,et al.  Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications , 2004, Journal of Lightwave Technology.