Generalized Price's law on fractional-order asymptotically flat stationary spacetimes

We obtain estimates on the rate of decay of a solution to the wave equation on a stationary spacetime that tends to Minkowski space at a rate $O(\lvert x \rvert^{-\kappa}),$ $\kappa \in (1,\infty) \backslash \mathbb{N}.$ Given suitably smooth and decaying initial data, we show a wave locally enjoys the decay rate $O(t^{-\kappa-2+\epsilon})$.

[1]  Shi-Zhuo Looi Pointwise decay for the wave equation on nonstationary spacetimes , 2021, Journal of Mathematical Analysis and Applications.

[2]  Dejan Gajic,et al.  Late-time tails and mode coupling of linear waves on Kerr spacetimes , 2021, Advances in Mathematics.

[3]  S. Aretakis,et al.  Price’s Law and Precise Late-Time Asymptotics for Subextremal Reissner–Nordström Black Holes , 2021, Annales Henri Poincaré.

[4]  R. Melrose Spectral and Scattering Theory for the Laplacian on Asymptotically Euclidian Spaces , 2020, Spectral and scattering theory.

[5]  K. Morgan The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting , 2020, American Journal of Mathematics.

[6]  P. Hintz A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes , 2020, Communications in Mathematical Physics.

[7]  A. Vasy Resolvent near zero energy on Riemannian scattering (asymptotically conic) spaces, a Lagrangian approach , 2018, Pure and Applied Analysis.

[8]  R. Booth,et al.  Localized energy for wave equations with degenerate trapping , 2017, Mathematical Research Letters.

[9]  D. Tataru,et al.  Local energy decay for scalar fields on time dependent non-trapping backgrounds , 2017, American Journal of Mathematics.

[10]  S. Aretakis,et al.  Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes , 2016, 1612.01566.

[11]  I. Rodnianski,et al.  Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M , 2014, 1402.7034.

[12]  Jan Sbierski Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes , 2013, 1311.2477.

[13]  J. Wunsch Resolvent estimates with mild trapping , 2012, 1209.0843.

[14]  J. Bony,et al.  Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case , 2011, Journal of the Institute of Mathematics of Jussieu.

[15]  M. Tohaneanu,et al.  Price's Law on Nonstationary Space-Times , 2011, 1104.5437.

[16]  Andrew Hassell,et al.  Resolvent at low energy III: The spectral measure , 2010, 1009.3084.

[17]  J. Luk A Vector Field Method Approach to Improved Decay for Solutions to the Wave Equation on a Slowly Rotating Kerr Black Hole , 2010, 1009.0671.

[18]  Dietrich Hafner,et al.  Local Energy Decay for Several Evolution Equations on Asymptotically Euclidean Manifolds , 2010, 1008.2357.

[19]  M. Zworski,et al.  Resolvent Estimates for Normally Hyperbolic Trapped Sets , 2010, 1003.4640.

[20]  D. Tataru Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.

[21]  I. Rodnianski,et al.  A new physical-space approach to decay for the wave equation with applications to black hole spacetimes , 2009, 0910.4957.

[22]  Wilhelm Schlag,et al.  A proof of Price's Law on Schwarzschild black hole manifolds for all angular momenta , 2009, 0908.4292.

[23]  L. Andersson,et al.  Hidden symmetries and decay for the wave equation on the Kerr spacetime , 2009, 0908.2265.

[24]  C. Sogge,et al.  Concerning the wave equation on asymptotically Euclidean manifolds , 2008, 0901.0022.

[25]  I. Rodnianski,et al.  Lectures on black holes and linear waves , 2008, 0811.0354.

[26]  D. Tataru,et al.  Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.

[27]  I. Rodnianski,et al.  A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds , 2008, 0805.4309.

[28]  M. Tohaneanu,et al.  Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.

[29]  D. Tataru,et al.  Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.

[30]  S. Alinhac On the Morawetz-Keel-Smith-Sogge Inequality for the Wave Equation on a Curved Background , 2006 .

[31]  Jason Metcalfe,et al.  Long-Time Existence of Quasilinear Wave Equations Exterior to Star-Shaped Obstacles via Energy Methods , 2006, SIAM J. Math. Anal..

[32]  I. Rodnianski,et al.  The red‐shift effect and radiation decay on black hole spacetimes , 2005, gr-qc/0512119.

[33]  S. Yau,et al.  Decay of Solutions of the Wave Equation in the Kerr Geometry , 2005, gr-qc/0504047.

[34]  A. Soffer,et al.  Semilinear wave equations on the Schwarzschild manifold. I. Local decay estimates , 2003, Advances in Differential Equations.

[35]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[36]  Richard B. Melrose,et al.  The Atiyah-Patodi-Singer Index Theorem , 1993 .

[37]  A. Jensen Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L2(R4) , 1984 .

[38]  R. Melrose Transformation of boundary problems , 1981 .

[39]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[40]  Cathleen S. Morawetz,et al.  The decay of solutions of the exterior initial-boundary value problem for the wave equation , 1961 .

[41]  R. Melrose,et al.  Elliptic Operators of Totally Characteristic Type , 1983 .

[42]  R. Price,et al.  Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .