Double Symmetry Breaking of Modes in Dual-Core Rotating System

We study spontaneous symmetry breaking in a dual-core system with a rotating double well potential in self-focusing nonlinearity. By tuning the coupling parameter and total optical power, four types of mode have been found. Double symmetry breaking, which is a combination of the symmetry breaking of the waveform and the optical power distribution, occurs under specific conditions. The numerical simulations show that there are some overlaps among the different stable modes, which have confirmed the coexistence of the modes. It is found that the region where the four stable modes coexist shifts with the variation in the rotating speed, and the corresponding parameters, the coupling parameter and total power, decrease sharply with the increase in the rotating speed.

[1]  Guihua Chen,et al.  Switch between the Types of the Symmetry Breaking Bifurcation in Optically Induced Photorefractive Rotational Double-Well Potential , 2013 .

[2]  Leon Poladian,et al.  Physics of nonlinear fiber couplers , 1991 .

[3]  S. Schwartz,et al.  One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide , 2006, cond-mat/0606262.

[4]  B. A. Malomed,et al.  Spontaneous symmetry breaking in photonic lattices: Theory and experiment , 2004, cond-mat/0412381.

[5]  Paré,et al.  Approximate model of soliton dynamics in all-optical couplers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  L. Salasnich,et al.  Rabi?Josephson oscillations and self-trapped dynamics in atomic junctions with two bosonic species , 2010, 1012.2989.

[7]  W. M. Liu,et al.  Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps. , 2008, Physical review letters.

[8]  Jianying Zhou,et al.  Defect-mediated discrete solitons in optically induced photorefractive lattices , 2009 .

[9]  Wei Pang,et al.  Two-component solitons under a spatially modulated linear coupling: Inverted photonic crystals and fused couplers , 2012, 1205.1899.

[10]  Hiroki Saito,et al.  Emergence of BLOCH bands in a rotating Bose-Einstein condensate. , 2004, Physical review letters.

[11]  L D Carr,et al.  Ultracold bosons in a tilted multilevel double-well potential. , 2007, Physical review letters.

[12]  B. A. Malomed,et al.  Two-component nonlinear Schrodinger models with a double-well potential , 2008, 0805.0023.

[13]  Peter S. Lomdahl,et al.  The discrete self-trapping equation , 1985 .

[14]  P. T. Leung,et al.  Two-mode entanglement in two-component Bose-Einstein condensates (9 pages) , 2005 .

[15]  H. Sakaguchi,et al.  Melting transition of vortex lattice in point vortex systems , 2012, 1209.5503.

[16]  A. Smerzi,et al.  Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates , 1997, cond-mat/9706221.

[17]  Luca Salasnich,et al.  Atomic Josephson junction with two bosonic species , 2009, 0905.2080.

[18]  Boris A. Malomed,et al.  Solitary waves in coupled nonlinear waveguides with Bragg gratings , 1998 .

[19]  B. A. Malomed,et al.  Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates , 2010, 1003.3835.

[20]  Boris A. Malomed,et al.  Solitons in coupled waveguides with quadratic nonlinearity , 1997 .

[21]  Boris A. Malomed,et al.  Nonlinear modes and symmetry breaking in rotating double-well potentials , 2012, 1208.1498.

[22]  Boris A. Malomed,et al.  Guiding-center solitons in rotating potentials , 2007 .

[23]  Marek Trippenbach,et al.  Spontaneous symmetry breaking of solitons trapped in a double-channel potential , 2007, 0704.1601.

[24]  J. Fleischer,et al.  Nonlinear light propagation in rotating waveguide arrays , 2009, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[25]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  B. A. Malomed,et al.  Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps , 2008, 0802.1821.

[27]  T. Lakoba,et al.  Universally‐Convergent Squared‐Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations , 2007, nlin/0702033.

[28]  Xiaobing Luo,et al.  Formation and structure of vortex lattices in a rotating double-well Bose-Einstein condensate , 2012, 1204.4522.

[29]  Peng,et al.  Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Mark Edwards,et al.  Symmetry-breaking and Symmetry-restoring Dynamics of a Mixture of Bose-Einstein Condensates in a Double Well , 2008, 0811.1921.

[31]  A. Smerzi,et al.  Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping , 1997 .

[32]  Boris A. Malomed,et al.  Symmetry breaking in dipolar matter-wave solitons in dual-core couplers , 2012, 1212.5568.

[33]  Boris A. Malomed,et al.  Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity , 2006, Math. Comput. Simul..

[34]  N. Akhmediev,et al.  Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. , 1993, Physical review letters.

[35]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[36]  Gang-Ding Peng,et al.  Soliton switching and propagation in nonlinear fiber couplers: analytical results , 1993 .

[37]  Boris A. Malomed,et al.  Symmetric and asymmetric solitons in linearly coupled Bose-Einstein condensates trapped in optical lattices , 2007, 0705.0364.

[38]  Boris A. Malomed,et al.  Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices , 2007, 0708.4028.

[39]  T A Birks,et al.  Structural rocking filters in highly birefringent photonic crystal fiber. , 2003, Optics letters.

[40]  Boris A. Malomed,et al.  All-optical switching in a two-channel waveguide with cubic–quintic nonlinearity , 2006, nlin/0605010.