Transient exposure to miR-203 expands the differentiation capacity of pluripotent stem cells

María Salazar-Roa,*# Marianna Trakala,* Mónica Álvarez-Fernández,* Fátima Valdés-Mora,* Cuiqing Zhong,*, Jaime Muñoz, Yang Yu, Timothy J. Peters, Osvaldo Graña-Castro, Rosa Serrano, Elisabet Zapatero-Solana, María Abad, María José Bueno, Marta Gómez de Cedrón, José Fernández-Piqueras, Manuel Serrano, María A. Blasco, Da-Zhi Wang, Susan J. Clark, Juan Carlos IzpisuaBelmonte, Sagrario Ortega, and Marcos Malumbres# 1 Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 2 Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, Australia 3 Gene Expression Laboratory, The Salk Institute for Biological Studies, CA, USA 4 Transgenics Unit, CNIO, Madrid, Spain 5 Bioinformatics Unit, CNIO, Madrid, Spain 6 Telomeres and Telomerase Group, CNIO, Madrid, Spain 7 Tumor Suppression Group, CNIO, Madrid, Spain 8 Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain 9 Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain 10 Instituto de Investigación Biosanitaria; Fundación Jimenez Díaz, Madrid, Spain 11 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain 12 Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain 13 Cardiovascular Research Division, Boston Children ́s Hospital, Harvard Medical School, Boston, USA

[1]  W. Reik,et al.  Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program , 2018, bioRxiv.

[2]  Guoshuai Cai,et al.  Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data , 2018, Bioinform..

[3]  D. Pisano,et al.  Nextpresso: Next Generation Sequencing Expression Analysis Pipeline , 2017, Current Bioinformatics.

[4]  E. Mizutani,et al.  Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation , 2017, Nature.

[5]  Andrej J. Savol,et al.  Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells , 2017, Nature.

[6]  Xiang Li,et al.  Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency , 2017, Cell.

[7]  K. C. K. Lloyd,et al.  Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells , 2017, Science.

[8]  S. Ng,et al.  A novel miR‐203‐DNMT3b‐ABCG2 regulatory pathway predisposing colorectal cancer development , 2017, Molecular carcinogenesis.

[9]  R. Jaenisch,et al.  Stem cells and interspecies chimaeras , 2016, Nature.

[10]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell Stem Cell.

[11]  Mo Li,et al.  Looking to the future following 10 years of induced pluripotent stem cell technologies , 2016, Nature Protocols.

[12]  Shaorong Gao,et al.  Human Naive Embryonic Stem Cells: How Full Is the Glass? , 2016, Cell stem cell.

[13]  S. Yamanaka,et al.  A decade of transcription factor-mediated reprogramming to pluripotency , 2016, Nature Reviews Molecular Cell Biology.

[14]  R. Pedersen,et al.  Human-Mouse Chimerism Validates Human Stem Cell Pluripotency , 2016, Cell stem cell.

[15]  Sarah W. Burge,et al.  Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks , 2015, Genes & development.

[16]  A. Izzotti,et al.  The Roles of miR-26, miR-29, and miR-203 in the Silencing of the Epigenetic Machinery during Melanocyte Transformation , 2015, BioMed research international.

[17]  J. Seidman,et al.  Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis. , 2015, The Journal of clinical investigation.

[18]  J. Rinn,et al.  Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells , 2015, Nature Genetics.

[19]  Peter L Molloy,et al.  De novo identification of differentially methylated regions in the human genome , 2015, Epigenetics & Chromatin.

[20]  D. Karolchik,et al.  The UCSC Genome Browser database: 2016 update , 2015, bioRxiv.

[21]  S. Ramaswamy,et al.  Small molecules facilitate rapid and synchronous iPSC generation , 2014, Nature Methods.

[22]  Lijing Yao,et al.  Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes , 2014, Genome Biology.

[23]  F. Biase,et al.  Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing , 2014, Genome research.

[24]  K. Conneely,et al.  A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data , 2014, Nucleic acids research.

[25]  Brent S. Pedersen,et al.  Fast and accurate alignment of long bisulfite-seq reads , 2014, 1401.1129.

[26]  G. Pan,et al.  Vitamin C modulates TET1 function during somatic cell reprogramming , 2013, Nature Genetics.

[27]  M. Serrano,et al.  Reprogramming in vivo produces teratomas and iPS cells with totipotency features , 2013, Nature.

[28]  M. Malumbres,et al.  microRNA-203: Tumor Suppression and Beyond. , 2013, MicroRNA.

[29]  Michael B. Stadler,et al.  Identification of active regulatory regions from DNA methylation data , 2013, Nucleic acids research.

[30]  Michael Q. Zhang,et al.  Epigenomic Analysis of Multilineage Differentiation of Human Embryonic Stem Cells , 2013, Cell.

[31]  Pieter Mestdagh,et al.  Regulatory microRNA network identification in bovine blastocyst development. , 2013, Stem cells and development.

[32]  Kirsten R. McEwen,et al.  Naïve pluripotency is associated with global DNA hypomethylation , 2013, Nature Structural &Molecular Biology.

[33]  P. Laird,et al.  Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq data , 2012, Genome Biology.

[34]  W. Coleman,et al.  Loss of post-transcriptional regulation of DNMT3b by microRNAs: A possible molecular mechanism for the hypermethylation defect observed in a subset of breast cancer cell lines , 2012, International journal of oncology.

[35]  Shawn P. Driscoll,et al.  ES cell potency fluctuates with endogenous retrovirus activity , 2012, Nature.

[36]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[37]  Perminder S Sachdev,et al.  Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles. , 2012, Stem cells and development.

[38]  J. Visvader,et al.  Lineage Specific Methylation of the Elf5 Promoter in Mammary Epithelial Cells , 2011, Stem cells.

[39]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[40]  J. Nadeau,et al.  Isolation of epiblast stem cells from preimplantation mouse embryos. , 2011, Cell stem cell.

[41]  Gordon Keller,et al.  Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. , 2011, Cell stem cell.

[42]  Tomohiro Kono,et al.  Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells , 2010, Nature.

[43]  M. Tada,et al.  Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: Qualitative effects on electrophysiological responses to drugs. , 2010, Stem cell research.

[44]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[45]  Shaorong Gao,et al.  Cell Stem Cell Brief Report Ips Cells Can Support Full-term Development of Tetraploid Blastocyst-complemented Embryos Cell Stem Cell Brief Report , 2022 .

[46]  Qi Zhou,et al.  iPS cells produce viable mice through tetraploid complementation , 2009, Nature.

[47]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[48]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[49]  Yuan-Qing Yao,et al.  Determination of microRNAs in mouse preimplantation embryos by microarray , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[50]  T. Mikkelsen,et al.  Dissecting direct reprogramming through integrative genomic analysis , 2008, Nature.

[51]  R. Jaenisch,et al.  Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. , 2008, Genes & development.

[52]  W. Reik,et al.  Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis. , 2008, Genes & development.

[53]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[54]  Elaine Fuchs,et al.  A skin microRNA promotes differentiation by repressing ‘stemness’ , 2008, Nature.

[55]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[56]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[57]  Rudolf Jaenisch,et al.  Efficient method to generate single‐copy transgenic mice by site‐specific integration in embryonic stem cells , 2006, Genesis.

[58]  Thomas Lengauer,et al.  BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing , 2005, Bioinform..

[59]  T. Chevassut,et al.  Severe Global DNA Hypomethylation Blocks Differentiation and Induces Histone Hyperacetylation in Embryonic Stem Cells , 2004, Molecular and Cellular Biology.

[60]  E. Li,et al.  Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b , 2003, Molecular and Cellular Biology.

[61]  L. Leinwand,et al.  Myosin heavy chain isoform expression in the failing and nonfailing human heart. , 2000, Circulation research.

[62]  D. Haber,et al.  DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for De Novo Methylation and Mammalian Development , 1999, Cell.

[63]  Weiqi Zhang,et al.  Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules , 2011, Cell Research.

[64]  K. Hochedlinger,et al.  A reprogrammable mouse strain from gene-targeted embryonic stem cells , 2010, Nature Methods.

[65]  J. Cigudosa,et al.  Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. , 2008, Cancer cell.