Spectral analogues of Erdős’ and Moon–Moser’s theorems on Hamilton cycles

In 1962, Erdős gave a sufficient condition for Hamilton cycles in terms of the vertex number, edge number and minimum degree of graphs which generalized Ore’s theorem. One year later, Moon and Moser gave an analogous result for Hamilton cycles in balanced bipartite graphs. In this paper, we present the spectral analogues of Erdős’ theorem and Moon–Moser’s theorem, respectively. Let be the class of non-Hamiltonian graphs of order n and minimum degree at least k. We determine the maximum (signless Laplacian) spectral radius of graphs in (for large enough n), and the minimum (signless Laplacian) spectral radius of the complements of graphs in . All extremal graphs with the maximum (signless Laplacian) spectral radius and with the minimum (signless Laplacian) spectral radius of the complements are determined, respectively. We also solve similar problems for balanced bipartite graphs and the quasi-complements.

[1]  Lihua Feng The Signless Laplacian Spectral Radius for Bicyclic Graphs with κ Pendant Vertices , 2010 .

[2]  Michael S. Jacobson,et al.  Hamiltonian cycles avoiding sets of edges in a graph , 2007, Australas. J Comb..

[3]  Michael Doob,et al.  Spectra of graphs , 1980 .

[4]  Vladimir Nikiforov,et al.  Spectral radius and Hamiltonicity of graphs , 2009, 0903.5353.

[5]  Bo Ning,et al.  Spectral radius and Hamiltonian properties of graphs , 2013, 1309.0217.

[6]  J. Moon,et al.  On Hamiltonian bipartite graphs , 1963 .

[7]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[8]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[9]  Xiao-Dong Zhang,et al.  Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees , 2005, Discret. Math..

[10]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[11]  O. Ore Arc coverings of graphs , 1961 .

[12]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[13]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[14]  Huiqing Liu,et al.  Spectral radius and Hamiltonian graphs , 2012 .

[15]  Shmuel Friedland,et al.  On the First Eigenvalue of Bipartite Graphs , 2008, Electron. J. Comb..

[16]  Péter Csikvári On a conjecture of V. Nikiforov , 2009, Discret. Math..

[17]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[18]  Xiao-Dong Zhang,et al.  On the Spectral Radius of Graphs with Cut Vertices , 2001, J. Comb. Theory, Ser. B.

[19]  A. Kelmans On graphs with randomly deleted edges , 1981 .

[20]  Michael S. Jacobson,et al.  Characterizing degree-sum maximal nonhamiltonian bipartite graphs , 2012, Discret. Math..

[21]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[22]  Baofeng Wu,et al.  The spectral radius of trees on k pendant vertices , 2005 .

[23]  Nicos Christofides,et al.  Conditions for the existence of Hamiltonian circuits in graphs based on vertex degrees , 1985 .

[24]  Bo Zhou,et al.  Signless Laplacian spectral radius and Hamiltonicity , 2010 .

[25]  P Erdős (1) 15* Remarks on a Paper of Pósa , .

[26]  Yi-Zheng Fan,et al.  Spectral Conditions for a Graph to be Hamilton-Connected , 2012, 1207.6447.

[27]  S. Znám,et al.  On a combinatorical problem of K. Zarankiewicz , 1963 .

[28]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[29]  Ruifang Liu,et al.  Sufficient spectral conditions on Hamiltonian and traceable graphs , 2014, 1412.5273.

[30]  R. Merris A note on Laplacian graph eigenvalues , 1998 .

[31]  Lihua Feng,et al.  ON THREE CONJECTURES INVOLVING THE SIGNLESS LAPLACIAN SPECTRAL RADIUS OF GRAPHS , 2009 .

[32]  Richard M. Karp,et al.  Reducibility among combinatorial problems" in complexity of computer computations , 1972 .