Tolerance of copepods to short-term thermal stress caused by coastal power stations

Abstract The tolerance of marine copepods to short-term thermal stress was measured by the median lethal temperature (LT50) tests in laboratory. Experiments on LT50 of copepods from different acclimation and acclimatization conditions collected from the Yueqing Bay were carried out under heat exposure for 15, 30 and 45 min. The LT50 of copepods decreased with increasing exposure time but increased with rising acclimation and acclimatization temperatures. However, the differences in copepod LT50 decreased with rising acclimatization temperatures, which suggested that entrained copepod mortality increased with raised water temperature due to the acute thermal stress of coastal power stations. Results also revealed that the thermal tolerance of Labidocera euchaeta was much higher than that of Calanus sinicus in spring. The thermal tolerances of different copepod species in summer were in the order, Pseudodiaptomus marinus, Acartia spinicauda, Acartia pacifica and L. euchaeta.

[1]  G. Somero Linking biogeography to physiology: Evolutionary and acclimatory adjustments of thermal limits , 2005, Frontiers in Zoology.

[2]  K. Nair,et al.  Preliminary observations on the recovery of tropical phytoplankton after entrainment , 1998 .

[3]  S. V. Narasimhan,et al.  Use of coastal waters as condenser coolant in electric power plants: Impact on phytoplankton and primary productivity , 2006 .

[4]  T. E. Langford,et al.  Ecological effects of thermal discharges , 1990 .

[5]  B. Melton,et al.  Florida Power Corporation–Anclote Power Plant Entrainment Survival of Zooplankton , 2000 .

[6]  A. Longhurst The structure and evolution of plankton communities , 1985 .

[7]  Jonathon H Stillman,et al.  Acclimation Capacity Underlies Susceptibility to Climate Change , 2003, Science.

[8]  A. Martínez-Arroyo,et al.  On the Influence of Hot-Water Discharges on Phytoplankton Communities from a Coastal Zone of the Gulf of Mexico , 2000 .

[9]  Frankenberg,et al.  The heat shock response of adult Artemia franciscana. , 2000, Journal of thermal biology.

[10]  Jong Soo Park,et al.  Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters , 2002 .

[11]  J. G. González Critical thermal maxima and upper lethal temperatures for the calanoid copepods Acartia tonsa and A. clausi , 1974 .

[12]  Brad deYoung,et al.  Challenges of Modeling Ocean Basin Ecosystems , 2004, Science.

[13]  B. Bradley INCREASE IN RANGE OF TEMPERATURE TOLERANCE BY ACCLIMATION IN THE COPEPOD EURYTEMORA AFFINIS , 1978 .

[14]  G. Somero,et al.  Thermal limits and adaptation in marine Antarctic ectotherms: an integrative view , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  D. Towle,et al.  Genomic approaches to detecting thermal stress in Calanus finmarchicus (Copepoda: Calanoida) , 2004 .

[16]  G. V. Urk The effects of a temperature shock on zooplankton , 1979, Hydrobiological Bulletin.

[17]  H. Pörtner,et al.  Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[18]  Paul H. Muessig,et al.  A comparative review of entrainment survival studies at power plants in estuarine environments , 2000 .

[19]  K. Bowler Acclimation, heat shock and hardening , 2005 .

[20]  H. Pörtner,et al.  Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals , 2001, Naturwissenschaften.

[21]  H. Jenner,et al.  Chlorination by-products in chlorinated cooling water of some European coastal power stations , 1997 .

[22]  Hongkun Wang,et al.  Temperature acclimation alters cardiac performance in the lobster Homarus americanus , 2006, Journal of Comparative Physiology A.

[23]  G. Warren,et al.  The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook nuclear plant , 1986 .

[24]  R. Bamber,et al.  The effects of power station entrainment passage on three species of marine planktonic crustacean, Acartia tonsa (Copepoda), Crangon crangon (Decapoda) and Homarus gammarus (Decapoda). , 2004, Marine environmental research.

[25]  Thiyagarajan,et al.  Relative tolerance of cirripede larval stages to acute thermal shock: A laboratory study. , 2000, Journal of thermal biology.

[26]  M. Cuculescu,et al.  Seasonal thermal tolerance in marine Crustacea , 2006 .

[27]  R. Hernández Temperature tolerance polygon of Poecilia sphenops Valenciennes (Pisces: Poeciliidae) , 2002 .

[28]  R. Alden Effects of a thermal discharge on the mortality of copepods in a subtropical estuary , 1979 .

[29]  E. Lahdes ACUTE THERMAL TOLERANCE OF TWO ANTARCTIC COPEPODS, CALANOIDES ACUTUS AND CALANUS PROPINQUUS , 1995 .

[30]  Rajaguru,et al.  Temperature tolerance of some estuarine fishes. , 2001, Journal of thermal biology.

[31]  L. Kivivuori,et al.  How to measure the thermal death of Daphnia? A comparison of different heat tests and effects of heat injury , 1996 .

[32]  J. Schubel,et al.  Power plant entrainment : a biological assessment , 1978 .

[33]  Ke Wang,et al.  The Yellow Sea cold bottom water - an oversummering site for Calanus sinicus (Copepoda, Crustacea) , 2003 .

[34]  K. Lagerspetz,et al.  Heat shock response and thermal acclimation in Asellus aquaticus , 1996 .

[35]  Bo Yang,et al.  Summer reproduction of the planktonic copepod Calanus sinicus in the Yellow Sea : influences of high surface temperature and cold bottom water , 2007 .

[36]  L. Kivivuori,et al.  Thermal tolerance and fluidity of neuronal and branchial membranes of an antarctic amphipod (Orchomene plebs); a comparison with a baltic isopod (Saduria entomon) , 1993 .