A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity

Abstract The focus of this contribution is the numerical treatment of interface coupled problems concerning the interaction of incompressible fluid flow and permeable, elastic structures. The main emphasis is on extending the range of applicability of available formulations on especially three aspects. These aspects are the incorporation of a more general poroelasticity formulation, the use of the cut finite element method (CutFEM) to allow for large interface motion and topological changes of the fluid domain, and the application of a novel Nitsche-based approach to incorporate the Beavers–Joseph(–Saffmann) tangential interface condition. This last aspect allows one to extend the practicable range of applicability of the proposed formulation down to very low porosities and permeabilities which is important in several examples in application. Different aspects of the presented formulation are analyzed in a numerical example including spatial convergence, the sensitivity of the solution to the Nitsche penalty parameters, varying porosities and permeabilities, and a varying Beavers–Joseph interface model constant. Finally, a numerical example analyzing the fluid induced bending of a poroelastic beam provides evidence of the general applicability of the presented approach.

[1]  Weidong Zhao,et al.  Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .

[2]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[3]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[4]  W. Wall,et al.  A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions , 2017, 1706.05897.

[5]  Benedikt Schott,et al.  Monolithic cut finite element–based approaches for fluid‐structure interaction , 2018, International Journal for Numerical Methods in Engineering.

[6]  R. Showalter Poro-plastic filtration coupled to Stokes flow , 2005 .

[7]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[8]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[9]  Santiago Badia,et al.  Unified Stabilized Finite Element Formulations for the Stokes and the Darcy Problems , 2009, SIAM J. Numer. Anal..

[10]  Benedikt Schott,et al.  A stabilized Nitsche‐type extended embedding mesh approach for 3D low‐ and high‐Reynolds‐number flows , 2016 .

[11]  Benedikt Schott,et al.  A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact , 2018, International Journal for Numerical Methods in Engineering.

[12]  Carlo D'Angelo,et al.  Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport * , 2011 .

[13]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[14]  Dominique Chapelle,et al.  General coupling of porous flows and hyperelastic formulations -- From thermodynamics principles to energy balance and compatible time schemes , 2010 .

[15]  Wolfgang A. Wall,et al.  An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods , 2014, J. Comput. Phys..

[16]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[17]  Ivan Yotov,et al.  A Lagrange multiplier method for a Stokes–Biot fluid–poroelastic structure interaction model , 2017, Numerische Mathematik.

[18]  Wolfgang A. Wall,et al.  A general approach for modeling interacting flow through porous media under finite deformations , 2015 .

[19]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[20]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[21]  J. M. Cascón,et al.  A posteriori error analysis of an augmented mixed finite element method for Darcy flow , 2015 .

[22]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[23]  C. Hickox,et al.  Simulation of Coupled Viscous and Porous Flow Problems , 1996 .

[24]  Ivan Yotov,et al.  Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.

[25]  Cornelis W. Oosterlee,et al.  Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system , 2018, J. Comput. Phys..

[26]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[27]  W A Wall,et al.  A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Benedikt Schott,et al.  A monolithic approach to fluid‐structure interaction based on a hybrid Eulerian‐ALE fluid domain decomposition involving cut elements , 2018, International Journal for Numerical Methods in Engineering.

[29]  Annalisa Quaini,et al.  Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction , 2009, J. Comput. Phys..

[30]  Wolfgang A. Wall,et al.  Coupling strategies for biomedical fluid–structure interaction problems , 2010 .

[31]  Wolfgang A. Wall,et al.  Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes , 2016, 1605.01522.

[32]  Lena Yoshihara,et al.  Biofilm growth: A multi‐scale and coupled fluid‐structure interaction and mass transport approach , 2014, Biotechnology and bioengineering.

[33]  Matthias Mayr,et al.  A Temporal Consistent Monolithic Approach to Fluid-Structure Interaction Enabling Single Field Predictors , 2015, SIAM J. Sci. Comput..

[34]  A. Quarteroni,et al.  Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .

[35]  Bernhard A. Schrefler,et al.  The Finite Element Method in the Deformation and Consolidation of Porous Media , 1987 .

[36]  I. P. Jones,et al.  Low Reynolds number flow past a porous spherical shell , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[38]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[39]  Benedikt Schott,et al.  A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.

[40]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[41]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[42]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[43]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[44]  Wolfgang A. Wall,et al.  Two finite element approaches for Darcy and Darcy–Brinkman flow through deformable porous media—Mixed method vs. NURBS based (isogeometric) continuity , 2016 .

[45]  Martina Bukac,et al.  Computational analysis of energy distribution of coupled blood flow and arterial deformation , 2016 .

[46]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[47]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[48]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[49]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .