An Evaluation of the CMOS Technology Roadmap From the Point of View of Variability, Interconnects, and Power Dissipation

In this paper, using the new generation of model for assessment of CMOS technologies and roadmaps software, we discuss the CMOS logic roadmap in terms of circuit performance, power dissipation, and variability, such as loaded ring-oscillator delay, as well as through 6T-SRAM functionality. It is shown that these criteria will have to be taken into account in addition to the traditional 17%-per-year delay improvement to construct a new industrially viable roadmap.

[1]  Chenming Hu,et al.  45nm node planar-SOI technology with 0.296μm2 6T-SRAM cell , 2004, VLSIT 2004.

[2]  Sani R. Nassif,et al.  High Performance CMOS Variability in the 65nm Regime and Beyond , 2006, 2007 IEEE International Electron Devices Meeting.

[3]  C. Laviron,et al.  0.248/spl mu/m/sup 2/ and 0.334/spl mu/m/sup 2/ conventional bulk 6T-SRAM bit-cells for 45nm node low cost - general purpose applications , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[4]  K. Opsomer,et al.  High performance Ge pMOS devices using a Si-compatible process flow , 2006, 2006 International Electron Devices Meeting.

[5]  Jason C. S. Woo,et al.  Advanced model and analysis of series resistance for CMOS scaling into nanometer regime. II. Quantitative analysis , 2002 .

[6]  Thomas Skotnicki,et al.  High Threshold Voltage Matching Performance on Gate-All-Around MOSFET , 2006 .

[7]  A. Asenov,et al.  Random Impurity Scattering Induced Variability in Conventional Nano-Scaled MOSFETs: Ab initio Impurity Scattering Monte Carlo Simulation Study , 2006, 2006 International Electron Devices Meeting.

[8]  Noel Menezes,et al.  Repeater scaling and its impact on CAD , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  T. Skotnicki,et al.  Impact of Layout, Interconnects and Variability on CMOS Technology Roadmap , 2007, 2007 IEEE Symposium on VLSI Technology.

[10]  S. Kosonocky,et al.  Fluctuation limits & scaling opportunities for CMOS SRAM cells , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[11]  Chenming Hu,et al.  45nm node planar-SOI technology with 0.296 /spl mu/m/sup 2/ 6T-SRAM cell , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[12]  Tsai-Sheng Gau,et al.  Novel 20nm hybrid SOI/bulk CMOS technology with 0.183/spl mu/m/sup 2/ 6T-SRAM cell by immersion lithography , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[13]  T. Skotnicki,et al.  Refinement of the Subthreshold Slope Modeling for Advanced Bulk CMOS Devices , 2007, IEEE Transactions on Electron Devices.

[14]  Frederic Boeuf,et al.  Using Model for Assessment of Complementary Metal Oxide Semiconductor Technology and Roadmaps as a Pre-Simulation Program with Integrated Circuit Emphasis Model Generator for Early Technology and Circuit Simulation , 2008 .

[15]  T. Mizuno,et al.  Experimental Study Of Threshold Voltage Fluctuations Using An 8k MOSFET's Array , 1993, Symposium 1993 on VLSI Technology.

[16]  D. M. Kim,et al.  Photonic high-frequency capacitance-voltage characterization of interface states in metal-oxide-semiconductor capacitors , 2002 .

[17]  M. Ieong,et al.  Aggressively scaled (0.143 /spl mu/m/sup 2/) 6T-SRAM cell for the 32 nm node and beyond , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[18]  T. Skotnicki,et al.  Nonuniform Mobility-Enhancement Techniques and Their Impact on Device Performance , 2008, IEEE Transactions on Electron Devices.

[19]  Cedric Bermond,et al.  Impact of process parameters on circuit performance for the 32nm technology node , 2007 .

[20]  C. O. Chui,et al.  High Mobility Materials and Novel Device Structures for High Performance Nanoscale MOSFETs , 2006, 2006 International Electron Devices Meeting.

[21]  Mong-Song Liang,et al.  High-Performance PMOS Devices on (110)/<111'> Substrate/Channel with Multiple Stressors , 2006, 2006 International Electron Devices Meeting.

[22]  Anna W. Topol,et al.  Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[23]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[24]  M. Woo,et al.  Low cost 65nm CMOS platform for Low Power & General Purpose applications , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[25]  T. Skotnicki,et al.  The voltage-doping transformation: a new approach to the modeling of MOSFET short-channel effects , 1988, IEEE Electron Device Letters.

[26]  T. Fukai,et al.  SRAM critical yield evaluation based on comprehensive physical / statistical modeling, considering anomalous non-Gaussian intrinsic transistor fluctuations , 2007, 2007 IEEE Symposium on VLSI Technology.

[27]  T. Skotnicki,et al.  Optimal Scaling Methodologies and Transistor Performance , 2005 .

[28]  A. Heringa,et al.  A new cell-based performance metric for novel CMOS device architectures , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..