INTEGRATING GLOBAL AND LOCAL VOTING OF CLASSIFIERS

Many data mining problems involve an investigation of the relationships between features in heterogeneous data sets, where different learning algorithms can be more appropriate for different regions. The author proposes herein a technique of integrating global and local voting of classifiers. A comparison with other well-known combining methods on standard benchmark data sets was performed, and the accuracy of the proposed method was greater.

[1]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[2]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[3]  Ian H. Witten,et al.  Issues in Stacked Generalization , 2011, J. Artif. Intell. Res..

[4]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[5]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[6]  Xin Yao,et al.  An analysis of diversity measures , 2006, Machine Learning.

[7]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[8]  Geoffrey I. Webb,et al.  MultiBoosting: A Technique for Combining Boosting and Wagging , 2000, Machine Learning.

[9]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[10]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[12]  Chris Mellish,et al.  Advances in Instance Selection for Instance-Based Learning Algorithms , 2002, Data Mining and Knowledge Discovery.

[13]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[14]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[15]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[16]  Alexander K. Seewald,et al.  How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness , 2002, International Conference on Machine Learning.

[17]  Bernhard Pfahringer,et al.  Locally Weighted Naive Bayes , 2002, UAI.

[18]  Louis Vuurpijl,et al.  An overview and comparison of voting methods for pattern recognition , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[19]  Kagan Tumer,et al.  Classifier ensembles: Select real-world applications , 2008, Inf. Fusion.

[20]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[21]  Johannes Fürnkranz,et al.  An Evaluation of Grading Classifiers , 2001, IDA.

[22]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..