An Approach for Solving Multi-objective Bi- Level Linear Programming Based on Genetic Algorithm

1 th 4 Abstract: This paper studies and designs a genetic algorithm (GA) of the multi-objective bi-level linear programming problems (M OBLPP) by constructing the fitness function of the upper -level programming problems based on the definition of the feasible degree. This GA avoids the use of penalty function to deal with the constraints, by changing the randomly generated initial population into an initial population satisfying the constraints in order to improve the ability of the GA to deal with the constraints. A comparative study of the proposed method and previous methods through numerical results of an example to show the proposed method in this paper is feasible and efficient to solve (MOBLPP). Finally, parametric study of the GA is introduced.

[1]  Jonathan F. Bard,et al.  Coordination of a multidivisional organization through two levels of management , 1983 .

[2]  Johan Andersson,et al.  A survey of multiobjective optimization in engineering design , 2001 .

[3]  E. Stanley Lee,et al.  Fuzzy approach for multi-level programming problems , 1996, Comput. Oper. Res..

[4]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[5]  Mohammad Mehdi Sepehri,et al.  Linear bilevel programming solution by genetic algorithm , 2002, Comput. Oper. Res..

[6]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[7]  Jiguan G. Lin Three Methods for Determining Pareto-Optimal Solutions of Multiple-Objective Problems , 1976 .

[8]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for two-level linear fractional programming problems , 2001, Fuzzy Sets Syst..

[9]  Ichiro Nishizaki,et al.  Interactive Fuzzy Programming Using Partial information about Preference for Multiobjective Two-Level Linear Programming Problems , 2001 .

[10]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[11]  Masatoshi Sakawa,et al.  INTERACTIVE FUZZY PROGRAMMING FOR MULTI-LEVEL NONLINEAR INTEGER PROGRAMMING PROBLEMS THROUGH GENETIC ALGORITHMS , 2005 .

[12]  L.M. Tolbert,et al.  Harmonic optimization of multilevel converters using genetic algorithms , 2004, IEEE Power Electronics Letters.

[13]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[14]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for two-level linear fractional programming problems with fuzzy parameters , 2000, Fuzzy Sets Syst..

[15]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[16]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for multi-level 0-1 programming problems with fuzzy parameters through genetic algorithms , 2001, Fuzzy Sets Syst..

[17]  Lakhmi C. Jain,et al.  Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[18]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study , 2001, Eur. J. Oper. Res..

[19]  Jonathan F. Bard,et al.  An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem , 1983, Oper. Res..

[20]  Patrice Marcotte,et al.  A note on the Pareto optimality of solutions to the linear bilevel programming problem , 1991, Comput. Oper. Res..