Fully stripped? The dynamics of dark and luminous matter in the massive cluster collision MACSJ0553.4-3342

We present the results of a multiwavelength investigation of the very X-ray luminous galaxy cluster MACSJ0553.4-3342 ($z = 0.4270$; hereafter MACSJ0553). Combining high-resolution data obtained with the Hubble Space Telescope and the Chandra X-ray Observatory with ground-based galaxy spectroscopy, our analysis establishes the system unambiguously as a binary, post-collision merger of massive clusters. Key characteristics include perfect alignment of luminous and dark matter for one component, a separation of almost 650 kpc (in projection) between the dark-matter peak of the other subcluster and the second X-ray peak, extremely hot gas (k$T > 15$ keV) at either end of the merger axis, a potential cold front in the east, an unusually low gas mass fraction of approximately 0.075 for the western component, a velocity dispersion of $1490_{-130}^{+104}$ km s$^{-1}$, and no indication of significant substructure along the line of sight. We propose that the MACSJ0553 merger proceeds not in the plane of the sky, but at a large inclination angle, is observed very close to turnaround, and that the eastern X-ray peak is the cool core of the slightly less massive western component that was fully stripped and captured by the eastern subcluster during the collision. If correct, this hypothesis would make MACSJ0553 a superb target for a competitive study of ram-pressure stripping and the collisional behaviour of luminous and dark matter during cluster formation.

[1]  D. Wittman,et al.  The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters , 2017, The Astrophysical Journal.

[2]  S. Randall,et al.  MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408 , 2016, 1604.03551.

[3]  K. Nandra,et al.  Second ROSAT all-sky survey (2RXS) source catalogue , 2016, 1609.09244.

[4]  M. Markevitch,et al.  THE MERGING GALAXY CLUSTER A520—A BROKEN-UP COOL CORE, A DARK SUBCLUSTER, AND AN X-RAY CHANNEL , 2016, 1603.05232.

[5]  H. Ebeling,et al.  Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters , 2015, 1511.00033.

[6]  S. Molendi,et al.  The evolution of the spatially-resolved metal abundance in galaxy clusters up to z=1.4 , 2015, 1504.02107.

[7]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[8]  O. Fèvre,et al.  The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.

[9]  J. Kneib,et al.  Mass and magnification maps for the Hubble Space Telescope Frontier Fields clusters: implications for high-redshift studies , 2014 .

[10]  R. Massey,et al.  Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ∼180 multiple images , 2014, 1409.8663.

[11]  R. Bouwens,et al.  FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.

[12]  J. Kneib,et al.  NEW CONSTRAINTS ON THE FAINT END OF THE UV LUMINOSITY FUNCTION AT z ∼ 7–8 USING THE GRAVITATIONAL LENSING OF THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1409.0512.

[13]  S. Paltani,et al.  The stripping of a galaxy group diving into the massive cluster A2142 , 2014, 1408.1394.

[14]  Y. Rephaeli,et al.  Evolution of the gas mass fraction in galaxy clusters , 2014, 1406.3709.

[15]  A. Edge,et al.  JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS , 2013, 1312.6135.

[16]  J. Richard,et al.  An X-ray/optical study of the geometry and dynamics of MACS J0140.0−0555, a massive post-collision cluster merger , 2012, 1207.6235.

[17]  A. Edge,et al.  Discovery of radio haloes and double relics in distant MACS galaxy clusters: clues to the efficiency of particle acceleration , 2012, 1206.6102.

[18]  W. Couch,et al.  SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744 , 2012, 1204.1052.

[19]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[20]  Jean-Paul Kneib,et al.  Cluster lenses , 2012, 1202.0185.

[21]  A. Mann,et al.  X-ray–optical classification of cluster mergers and the evolution of the cluster merger fraction , 2011, 1111.2396.

[22]  Christine Jones,et al.  THE UNIVERSAL GAS MASS FRACTION IN CLUSTERS OF GALAXIES , 2011, 1109.5067.

[23]  J. Kneib,et al.  Strong lensing by a node of the cosmic web The core of MACS J0717.5+3745 at z=0.55 , 2011, 1109.3301.

[24]  D. Masters,et al.  SpecPro: An Interactive IDL Program for Viewing and Analyzing Astronomical Spectra , 2011, 1103.3222.

[25]  J. Rhodes,et al.  Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 , 2011, 1103.2772.

[26]  A. Edge,et al.  The X-ray brightest clusters of galaxies from the Massive Cluster Survey , 2010, 1004.4683.

[27]  J. Kneib,et al.  LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.

[28]  S. Borgani,et al.  The cluster gas mass fraction as a cosmological probe: a revised study , 2009, 0904.2740.

[29]  H. Ebeling,et al.  AN X-RAY/OPTICAL STUDY OF THE COMPLEX DYNAMICS OF THE CORE OF THE MASSIVE INTERMEDIATE-REDSHIFT CLUSTER MACSJ0717.5+3745 , 2009, 0901.4783.

[30]  J. Kneib,et al.  Keck spectroscopic survey of strongly lensed galaxies in Abell 1703: further evidence of a relaxed, unimodal cluster , 2009, 0901.0427.

[31]  Edinburgh,et al.  Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4–1222 , 2008, 0806.2320.

[32]  M. Donahue,et al.  Hα Tail, Intracluster H II Regions, and Star Formation: ESO 137-001 in Abell 3627 , 2007, 0706.1220.

[33]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[34]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[35]  Anthony H. Gonzalez,et al.  Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56 , 2007, 0704.0261.

[36]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[37]  J. Kneib,et al.  The strong transformation of spiral galaxies infalling into massive clusters at z≈ 0.2 , 2007, astro-ph/0703012.

[38]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[39]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[40]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[41]  J. Sanders Contour binning: a new technique for spatially-resolved X-ray spectroscopy applied to Cassiopeia A , 2006, astro-ph/0606528.

[42]  M. Markevitch,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 11/27/05 THE ORIGIN OF COLD FRONTS IN THE CORES OF RELAXED GALAXY CLUSTERS , 2006 .

[43]  H. Ebeling,et al.  Asmooth: a simple and efficient algorithm for adaptive kernel smoothing of two-dimensional imaging data , 2006, astro-ph/0601306.

[44]  M. Markevitch,et al.  Absolute Measurement of the Unresolved Cosmic X-Ray Background in the 0.5-8 keV Band with Chandra , 2005, astro-ph/0512542.

[45]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[46]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[47]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[48]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[49]  N. Aghanim,et al.  The X-ray surface brightness profiles of hot galaxy clusters up to $\vec z$ ~ 0.8: Evidence for self-similarity and constraints on $\Omega_\mathsf{0}$ , 2002 .

[50]  R. S. Warwick,et al.  X-ray background measurements with XMM-Newton EPIC , 2002, astro-ph/0204147.

[51]  Orsay,et al.  The X-ray surface brightness profiles of hot galaxy clusters up to z~0.8: evidence for self-similarity and constraints on Omega_0 , 2001, astro-ph/0110428.

[52]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[53]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[54]  I. Smail,et al.  Hubble Space Telescope Observations of the Lensing Cluster Abell 2218 , 1995, astro-ph/9511015.

[55]  Alan M. Watson,et al.  The On-Orbit Performance of WFPC2 , 1994 .

[56]  Y. Mellier,et al.  The Dark Matter Distribution in MS 2137-23 from the Modeling of the Multiple Arc Systems , 1993 .

[57]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[58]  S. Snowden,et al.  Deconstructing the Spectrum of the Soft X-Ray Background , 2000 .