Multigrid Algorithm for High Order Denoising

Image denoising has been a research topic deeply investigated within the last two decades. Excellent results have been obtained by using such models as the total variation (TV) minimization by Rudin, Osher, and Fatemi [Phys. D, 60 (1992), pp. 259-268], which involves solving a second order PDE. In more recent years some effort has been made [Y.-L. You and M. Kaveh, IEEE Trans. Image Process., 9 (2000), pp. 1723-1730; M. Lysaker, S. Osher, and X.-C. Tai, IEEE Trans. Image Process., 13 (2004), pp. 1345-1357; M. Lysaker, A. Lundervold, and X.-C. Tai, IEEE Trans. Image Process., 12 (2003), pp. 1579-1590; Y. Chen, S. Levine, and M. Rao, SIAM J. Appl. Math., 66 (2006), pp. 1383-1406] in improving these results by using higher order models, particularly to avoid the staircase effect inherent to the solution of the TV model. However, the construction of stable numerical schemes for the resulting PDEs arising from the minimization of such high order models has proved to be very difficult due to high nonlinearity and stiffness. In this paper, we study a curvature-based energy minimizing model [W. Zhu and T. F. Chan, Image Denoising Using Mean Curvature, preprint, http://www.math.nyu.edu/ wzhu/], for which one has to solve a fourth order PDE. For this model we develop two new algorithms: a stabilized fixed point method and, based upon this, an efficient nonlinear multigrid (MG) algorithm. We will show numerical experiments to demonstrate the very good performance of our MG algorithm.

[1]  Stephen L. Keeling,et al.  Geometric multigrid for high-order regularizations of early vision problems , 2007, Appl. Math. Comput..

[2]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[3]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[4]  Xue-Cheng Tai,et al.  Noise removal using smoothed normals and surface fitting , 2004, IEEE Transactions on Image Processing.

[5]  Ke Chen,et al.  On High-Order Denoising Models and Fast Algorithms for Vector-Valued Images , 2010, IEEE Transactions on Image Processing.

[6]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[7]  Stanley Osher,et al.  Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal , 2000, SIAM J. Sci. Comput..

[8]  Xuejun Zhang,et al.  Uniform convergence of the multigrid {V}-cycle for an anisotropic problem , 2001, Math. Comput..

[9]  Ke Chen,et al.  An accelerated algebraic multigrid algorithm for total-variation denoising , 2007 .

[10]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[11]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[12]  Mostafa Kaveh,et al.  Fourth-order partial differential equations for noise removal , 2000, IEEE Trans. Image Process..

[13]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[14]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[15]  Lars Hömke,et al.  A multigrid method for anisotropic PDEs in elastic image registration , 2006, Numer. Linear Algebra Appl..

[16]  Tony F. Chan,et al.  Image processing and analysis , 2005 .

[17]  Ke Chen,et al.  Fast Numerical Algorithms for Euler's Elastica Inpainting Model , 2010 .

[18]  Hui Huang,et al.  On Effective Methods for Implicit Piecewise Smooth Surface Recovery , 2006, SIAM J. Sci. Comput..

[19]  Ke Chen,et al.  An Optimization-Based Multilevel Algorithm for Total Variation Image Denoising , 2006, Multiscale Model. Simul..

[20]  Stefan Henn,et al.  A Multigrid Approach for Minimizing a Nonlinear Functional for Digital Image Matching , 2000, Computing.

[21]  T. Chan,et al.  Robust multigrid methods for nonsmooth coefficient elliptic linear systems , 2000 .

[22]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[23]  Selim Esedoglu,et al.  Analogue of the Total Variation Denoising Model in the Context of Geometry Processing , 2009, Multiscale Model. Simul..

[24]  Ke Chen,et al.  An improved and accelerated non-linear multigrid method for total-variation denoising , 2005, Int. J. Comput. Math..

[25]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[26]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[27]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[28]  Achi Brandt,et al.  Local mesh refinement multilevel techniques , 1987 .

[29]  Stanley Osher,et al.  Numerical Methods for p-Harmonic Flows and Applications to Image Processing , 2002, SIAM J. Numer. Anal..

[30]  Riccardo March,et al.  A multigrid finite-difference method for the solution of Euler equations of the variational image segmentation , 2001 .

[31]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[32]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[33]  J. Dendy Black box multigrid , 1982 .

[34]  Harald Köstler,et al.  Lehrstuhl für Informatik 10 ( Systemsimulation ) Multigrid solution of the optical flow system using a combined diffusion and curvature based regularizer , 2007 .

[35]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[36]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[37]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[38]  Claudia Frohn-Schauf,et al.  Nonlinear multigrid methods for total variation image denoising , 2004 .

[39]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[41]  Ulrich Rüde,et al.  A fast full multigrid solver for applications in image processing , 2008, Numer. Linear Algebra Appl..

[42]  Petros Maragos,et al.  Multigrid Geometric Active Contour Models , 2007, IEEE Transactions on Image Processing.

[43]  Ke Chen,et al.  On Multigrids for Solving a Class of Improved Total Variation Based Staircasing Reduction Models , 2007 .

[44]  Ke Chen,et al.  Iterative methods for solving the dual formulation arising from image restoration , 2007 .

[45]  Arvid Lundervold,et al.  Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time , 2003, IEEE Trans. Image Process..

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Chen,et al.  MULTIGRID METHOD FOR A MODIFIED CURVATURE DRIVEN DIFFUSION MODEL FOR IMAGE INPAINTING , 2008 .

[49]  Marco Donatelli,et al.  A multigrid for image deblurring with Tikhonov regularization , 2005, Numer. Linear Algebra Appl..

[50]  Thomas Huckle,et al.  Multigrid solution techniques for anisotropic structured linear systems , 2008 .

[51]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[52]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[53]  Arnold Reusken,et al.  On the robustness of a multigrid method for anisotropic reaction-diffusion problems , 2007, Computing.