Sodium and T1ρ MRI for molecular and diagnostic imaging of articular cartilage

In this article, both sodium magnetic resonance (MR) and T1ρ relaxation mapping aimed at measuring molecular changes in cartilage for the diagnostic imaging of osteoarthritis are reviewed. First, an introduction to structure of cartilage, its degeneration in osteoarthritis (OA) and an outline of diagnostic imaging methods in quantifying molecular changes and early diagnostic aspects of cartilage degeneration are described. The sodium MRI section begins with a brief overview of the theory of sodium NMR of biological tissues and is followed by a section on multiple quantum filters that can be used to quantify both bi‐exponential relaxation and residual quadrupolar interaction. Specifically, (i) the rationale behind the use of sodium MRI in quantifying proteoglycan (PG) changes, (ii) validation studies using biochemical assays, (iii) studies on human OA specimens, (iv) results on animal models and (v) clinical imaging protocols are reviewed. Results demonstrating the feasibility of quantifying PG in OA patients and comparison with that in healthy subjects are also presented. The section concludes with the discussion of advantages and potential issues with sodium MRI and the impact of new technological advancements (e.g. ultra‐high field scanners and parallel imaging methods). In the theory section on T1ρ, a brief description of (i) principles of measuring T1ρ relaxation, (ii) pulse sequences for computing T1ρ relaxation maps, (iii) issues regarding radio frequency power deposition, (iv) mechanisms that contribute to T1ρ in biological tissues and (v) effects of exchange and dipolar interaction on T1ρ dispersion are discussed. Correlation of T1ρ relaxation rate with macromolecular content and biomechanical properties in cartilage specimens subjected to trypsin and cytokine‐induced glycosaminoglycan depletion and validation against biochemical assay and histopathology are presented. Experimental T1ρ data from osteoarthritic specimens, animal models, healthy human subjects and as well from osteoarthritic patients are provided. The current status of T1ρ relaxation mapping of cartilage and future directions is also discussed. Copyright © 2006 John Wiley & Sons, Ltd.

[1]  S. Vasanawala,et al.  Controversies in protocol selection in the imaging of articular cartilage. , 2005, Seminars in musculoskeletal radiology.

[2]  R. Pettigrew,et al.  Myocardial suppression in vivo by spin locking with composite pulses , 1996, Magnetic resonance in medicine.

[3]  B. Hills,et al.  Multinuclear NMR studies of water in solutions of simple carbohydrates.: II. Oxygen-17 relaxation , 1991 .

[4]  V J Schmithorst,et al.  Spatial variation in cartilage T2 of the knee , 2001, Journal of magnetic resonance imaging : JMRI.

[5]  Peter S. Belton,et al.  Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems , 1989 .

[6]  Arijitt Borthakur,et al.  23Na MRI accurately measures fixed charge density in articular cartilage , 2002, Magnetic resonance in medicine.

[7]  Alnawaz Rehemtulla,et al.  Sodium magnetic resonance imaging of chemotherapeutic response in a rat glioma , 2005, Magnetic resonance in medicine.

[8]  Rotating-frame spin—lattice relaxation measurements (T 1ρ) with weak spin-locking fields in the presence of homonuclear dipolar coupling , 2003 .

[9]  Deborah Burstein,et al.  New MRI Techniques for Imaging Cartilage , 2003, The Journal of bone and joint surgery. American volume.

[10]  M. Horn 23Na magnetic resonance imaging for the determination of myocardial viability: the status and the challenges. , 2004, Current vascular pharmacology.

[11]  A. Borthakur,et al.  In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. , 1999, Journal of magnetic resonance.

[12]  J. V. D. Maarel Relaxation of spin 3/2 in a nonzero average electric field gradient , 1989 .

[13]  G. Navon Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents , 1993, Magnetic resonance in medicine.

[14]  R. Bonham,et al.  Auto‐ and Cross‐Correlation Functions Used as Tools for Information Retrieval in Electron Diffraction Structure Studies , 1965 .

[15]  R. Jordan,et al.  Rotating-frame relaxation rates of solvent molecules in solutions of paramagnetic ions undergoing solvent exchange , 1984 .

[16]  Seymour H. Koenig,et al.  Field-cycling relaxometry of protein solutions and tissue: Implications for MRI , 1990 .

[17]  Christian Glaser,et al.  New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. , 2005, Radiologic clinics of North America.

[18]  I. V. Breuseghem Ultrastructural MR imaging techniques of the knee articular cartilage: problems for routine clinical application , 2004, European Radiology.

[19]  R. Reddy,et al.  Detection of 17O by Proton T1ρ Dispersion Imaging , 1995 .

[20]  Yi Liu,et al.  Change in knee cartilage T2 at MR imaging after running: a feasibility study. , 2005, Radiology.

[21]  G. Bydder,et al.  Magnetic resonance: new approaches to imaging of the musculoskeletal system. , 2003, Physiological measurement.

[22]  J. Pekar,et al.  Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering , 1986 .

[23]  P. Styles,et al.  23Na NMR methods for selective observation of sodium ions in ordered environments , 1997 .

[24]  R S Balaban,et al.  The design and test of a new volume coil for high field imaging , 1994, Magnetic resonance in medicine.

[25]  Michael P Recht,et al.  MRI of articular cartilage: revisiting current status and future directions. , 2005, AJR. American journal of roentgenology.

[26]  G. Bodenhausen,et al.  Multiple‐quantum NMR spectroscopy of S=3/2 spins in isotropic phase: A new probe for multiexponential relaxation , 1986 .

[27]  J. B. Kneeland,et al.  T1ρ‐relaxation in articular cartilage: Effects of enzymatic degradation , 1997, Magnetic resonance in medicine.

[28]  Garry E. Gold,et al.  Special Focus Session , 2003 .

[29]  A. Redfield Nuclear spin thermodynamics in the rotating frame. , 1969, Science.

[30]  B. Hills,et al.  The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues. , 1990, Magnetic resonance imaging.

[31]  K R Thulborn,et al.  Quantitative tissue sodium concentration mapping of the growth of focal cerebral tumors with sodium magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[32]  R. Balaban,et al.  Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo , 1989, Magnetic resonance in medicine.

[33]  L. Jelicks,et al.  Hydrogen‐1, sodium‐23, and carbon‐13 MR spectroscopy of cartilage degradation in vitro , 1993, Journal of magnetic resonance imaging : JMRI.

[34]  Andrew J Wheaton,et al.  Detection of changes in articular cartilage proteoglycan by T1ρ magnetic resonance imaging , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[35]  A. Borthakur,et al.  Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. , 2000, Journal of magnetic resonance.

[36]  S. Grinstein,et al.  Interleukin‐1β induction of c‐fos and collagenase expression in articular chondrocytes: Involvement of reactive oxygen species , 1998 .

[37]  Ray F. Lee,et al.  Quantification and imaging of myocardial sodium and creatine kinase metabolites , 2000, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine.

[38]  Ravi S. Menon,et al.  Long component time constant of 23Na T  *2 relaxation in healthy human brain , 2004, Magnetic resonance in medicine.

[39]  J. B. Kneeland,et al.  Sodium MRI of human articular cartilage in vivo , 1998, Magnetic resonance in medicine.

[40]  R. Richards,et al.  A general two-site solution for the chemical exchange produced dependence of T2 upon the carr-Purcell pulse separation , 1972 .

[41]  Frederik Maes,et al.  T2 mapping of human femorotibial cartilage with turbo mixed MR imaging at 1.5 T: feasibility. , 2004, Radiology.

[42]  V. Mlynárik,et al.  Transverse relaxation mechanisms in articular cartilage. , 2004, Journal of magnetic resonance.

[43]  G. Navon,et al.  A new method for suppressing the central transition in I=3/2 NMR spectra with a demonstration for 23Na in bovine articular cartilage. , 2003, Journal of magnetic resonance.

[44]  G. Navon,et al.  Multiquantum filters and order in tissues , 2001, NMR in biomedicine.

[45]  D. Burstein,et al.  Determination of fixed charge density in cartilage using nuclear magnetic resonance , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[46]  J. B. Kneeland,et al.  3D-T1ρ-relaxation mapping of articular cartilage , 2004 .

[47]  R. Teitge,et al.  MR features of osteoarthritis of the knee. , 1994, Magnetic resonance imaging.

[48]  J Silvennoinen,et al.  T2 relaxation reveals spatial collagen architecture in articular cartilage: A comparative quantitative MRI and polarized light microscopic study , 2001, Magnetic resonance in medicine.

[49]  R. Reddy,et al.  Sodium NMR evaluation of articular cartilage degradation , 1999, Magnetic resonance in medicine.

[50]  Yang Xia,et al.  Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14‐μm resolution , 1998 .

[51]  B. Hills,et al.  The effects of proteins on the proton N.M.R. transverse relaxation times of water: I. Native bovine serum albumin , 1989 .

[52]  John S. Leigh,et al.  Selective detection of intracellular sodium by coherence-transfer NMR , 1987 .

[53]  Craig R. Malloy,et al.  Effect of exercise on 23Na MRI and relaxation characteristics of the human calf muscle , 2000 .

[54]  Arijitt Borthakur,et al.  In vivo measurement of T1ρ dispersion in the human brain at 1.5 tesla , 2004 .

[55]  Xiaojuan Li,et al.  In vivo 3T spiral imaging based multi‐slice T1ρ mapping of knee cartilage in osteoarthritis , 2005, Magnetic resonance in medicine.

[56]  S Li,et al.  In Vivo sodium multiple quantum spectroscopy of human articular cartilage , 1997, Magnetic resonance in medicine.

[57]  P A Bottomley,et al.  Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. , 2000, Radiology.

[58]  B. Wickstead,et al.  Sodium ions in ordered environments in biological systems: analysis of 23Na NMR spectra. , 1999, Journal of magnetic resonance.

[59]  D. Woessner,et al.  Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems. , 1998, Journal of magnetic resonance.

[60]  A. Wand,et al.  Water magnetic relaxation dispersion in biological systems: The contribution of proton exchange and implications for the noninvasive detection of cartilage degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  E. Shapiro Multi -nuclear magnetic resonance methods for evaluating cartilage degeneration , 2001 .

[62]  G. Bodenhausen,et al.  Relaxation-induced violations of coherence transfer selection rules in nuclear magnetic resonance , 1987 .

[63]  J. Ra,et al.  In Vivo NMR Imaging of Sodium‐23 in the Human Head , 1985, Journal of computer assisted tomography.

[64]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[65]  Haeberlen Ulrich,et al.  High resolution NMR in solids : selective averaging , 1976 .

[66]  V. Goldberg,et al.  Changes in proteoglycans of human osteoarthritic cartilage maintained in explant culture: implications for understanding repair in osteoarthritis. , 1988, Scandinavian journal of rheumatology. Supplement.

[67]  S Gary Firestein,et al.  Kelley's Textbook of Rheumatology , 2004 .

[68]  Miika T Nieminen,et al.  T2 of articular cartilage in the presence of Gd‐DTPA2− , 2004, Magnetic resonance in medicine.

[69]  Garry E Gold,et al.  What's new in cartilage? , 2003, Radiographics : a review publication of the Radiological Society of North America, Inc.

[70]  Sharmila Majumdar,et al.  T2 relaxation time measurements in osteoarthritis. , 2004, Magnetic resonance imaging.

[71]  D. Burstein,et al.  Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. , 1997, Radiology.

[72]  Arijitt Borthakur,et al.  Proteoglycan depletion-induced changes in transverse relaxation maps of cartilage: comparison of T2 and T1rho. , 2002, Academic radiology.

[73]  Arijitt Borthakur,et al.  Quantifying sodium in the human wrist in vivo by using MR imaging. , 2002, Radiology.

[74]  R. Reddy,et al.  T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. , 2002, Osteoarthritis and cartilage.

[75]  B. Hills Multinuclear NMR studies of water in solutions of simple carbohydrates. , 1991 .

[76]  B. Schmitz,et al.  Three-dimensional true FISP for high-resolution imaging of the whole brain , 2003, European Radiology.

[77]  W. Ling,et al.  Selective detection of ordered sodium signals via the central transition. , 2006, Journal of magnetic resonance (San Diego, Calif. 1997 : Print).

[78]  J. Sandy,et al.  Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. , 1991, The Journal of biological chemistry.

[79]  L W Jelinski,et al.  Self-diffusion monitors degraded cartilage. , 1995, Archives of biochemistry and biophysics.

[80]  R. C. Hewitt,et al.  High Resolution NMR Probe Suitable for Use in a Superconducting Solenoid , 1965 .

[81]  Arijitt Borthakur,et al.  Three‐dimensional T1ρ‐weighted MRI at 1.5 Tesla , 2003 .

[82]  Andrew J Wheaton,et al.  Application of the keyhole technique to T1ρ relaxation mapping , 2003, Journal of magnetic resonance imaging : JMRI.

[83]  Robert J. Smith,et al.  Recombinant human interleukin-1α and recombinant human interleukin-1β stimulate cartilage matrix degradation and inhibit glycosaminoglycan synthesis , 1989, Inflammation.

[84]  S K Hilal,et al.  In vivo NMR imaging of tissue sodium in the intact cat before and after acute cerebral stroke. , 1983, AJNR. American journal of neuroradiology.

[85]  S. Jimenez,et al.  Osteoarthritis cartilage histopathology: grading and staging. , 2006, Osteoarthritis and cartilage.

[86]  Tara Prasad Das,et al.  Nuclear Quadrupole Resonance Spectroscopy , 1959 .

[87]  Oleg Trott,et al.  R1rho relaxation outside of the fast-exchange limit. , 2002, Journal of magnetic resonance.

[88]  D. Edwards,et al.  The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. , 2002, Arthritis and rheumatism.

[89]  J. V. D. Maarel Thermal relaxation and coherence dynamics of spin 3/2. II. Strong radio-frequency field , 2003 .

[90]  T. Carpenter,et al.  MR protocols for imaging the guinea pig knee. , 1997, Magnetic resonance imaging.

[91]  S. Neubauer,et al.  Evaluation of sodium T1 relaxation times in human heart , 2003, Journal of magnetic resonance imaging : JMRI.

[92]  Costin Tanase,et al.  Loss of cell ion homeostasis and cell viability in the brain: what sodium MRI can tell us. , 2005, Current topics in developmental biology.

[93]  K. Gersonde,et al.  T1ρ dispersion imaging and localized T1ρ dispersion relaxometry: Application in vivo to mouse adenocarcinoma , 1992 .

[94]  Frederick Kelcz,et al.  Off‐resonance spin locking for MR imaging , 1994, Magnetic resonance in medicine.

[95]  Michael B. Smith,et al.  SAR and B1 field distributions in a heterogeneous human head model within a birdcage coil , 1998, Magnetic resonance in medicine.

[96]  D. Elliott,et al.  Quantification of cartilage biomechanical and biochemical properties via T1ρ magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[97]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..

[98]  A. Jerschow From Nuclear Structure to the Quadrupolar NMR Interaction and High-Resolution Spectroscopy , 2005 .

[99]  T. Schleich,et al.  Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment. , 1992, Biophysical journal.

[100]  P J Basser,et al.  Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. , 1998, Archives of biochemistry and biophysics.

[101]  R. Reddy,et al.  Triple quantum sodium imaging of articular cartilage , 1997, Magnetic resonance in medicine.

[102]  J. B. Kneeland,et al.  Proteoglycan‐induced changes in T1ρ‐relaxation of articular cartilage at 4T , 2001, Magnetic resonance in medicine.

[103]  J. V. D. van der Maarel,et al.  Detection of sodium ions in anisotropic environments through spin‐lock NMR , 2002, Magnetic resonance in medicine.

[104]  D. Livingston,et al.  INTERLEUKIN-1β CONVERTING ENZYME INHIBITION BLOCKS PROGRESSION OF TYPE II COLLAGEN-INDUCED ARTHRITIS IN MICE , 1996 .

[105]  R. Wynn,et al.  Cloning and Characterization of ADAMTS11, an Aggrecanase from the ADAMTS Family* , 1999, The Journal of Biological Chemistry.

[106]  K. Uğurbil,et al.  Ultrahigh field magnetic resonance imaging and spectroscopy. , 2003, Magnetic resonance imaging.

[107]  K. Prickett,et al.  The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. , 1987, The Journal of biological chemistry.

[108]  R. Lenkinski,et al.  MR imaging of sodium in the human brain with a fast three-dimensional gradient-recalled-echo sequence at 4 T. , 2003, Academic radiology.

[109]  Asla Pitkänen,et al.  Early Detection of Irreversible Cerebral Ischemia in the Rat Using Dispersion of the Magnetic Resonance Imaging Relaxation Time, T1ρ , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  R. Reddy,et al.  Off‐resonance proton T1p dispersion imaging of 17O‐enriched tissue phantoms , 1998, Magnetic resonance in medicine.

[111]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[112]  K. T. Scott,et al.  Protocol issues for delayed Gd(DTPA)2–‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage , 2001, Magnetic resonance in medicine.

[113]  J. B. Kneeland,et al.  Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. , 2000, Osteoarthritis and cartilage.

[114]  W. Ling,et al.  Frequency-selective quadrupolar MRI contrast. , 2006, Solid state nuclear magnetic resonance.

[115]  R M Henkelman,et al.  Spin locking for magnetic resonance imaging with application to human breast , 1989, Magnetic resonance in medicine.

[116]  P. Primakoff,et al.  The ADAM gene family: surface proteins with adhesion and protease activity. , 2000, Trends in genetics : TIG.

[117]  W. Rooney,et al.  The molecular environment of intracellular sodium: 23Na NMR relaxation , 1991, NMR in biomedicine.

[118]  V J Schmithorst,et al.  MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. , 2001, AJR. American journal of roentgenology.

[119]  R. Knispel NMR study of the two-phase equilibrium in cysteine hydrochloride monohydrate. II , 1974 .

[120]  S. Kohler,et al.  Sodium magnetic resonance imaging and chemical shift imaging , 1992 .

[121]  Peter S. Belton,et al.  The effects of proteins on the proton N.M.R. transverse relaxation time of water , 1989 .

[122]  A. Palmer,et al.  An average-magnetization analysis of R 1ρ relaxation outside of the fast exchange limit , 2003 .

[123]  P. Slagboom,et al.  Association of the interleukin-1 gene cluster with radiographic signs of osteoarthritis of the hip. , 2004, Arthritis and rheumatism.

[124]  J. Granot Sodium imaging of human body organs and extremities in vivo. , 1988, Radiology.

[125]  J. B. Kneeland,et al.  In vivo proton MR three-dimensional T1rho mapping of human articular cartilage: initial experience. , 2003, Radiology.

[126]  J. B. Kneeland,et al.  Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T--preliminary experience. , 2001, Radiology.

[127]  L. Southam,et al.  Finer linkage mapping of primary osteoarthritis susceptibility loci on chromosomes 4 and 16 in families with affected women. , 2004, Arthritis and rheumatism.

[128]  T. Bull Relaxation in the rotating frame in liquids , 1992 .

[129]  P. Jakob,et al.  23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging , 2004, Magnetic Resonance Materials in Physics, Biology and Medicine.

[130]  R. Russell,et al.  In vitro activation of human chondrocytes and synoviocytes by a human interleukin-1-like factor. , 1984, Arthritis and rheumatism.

[131]  R. Wynn,et al.  Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. , 1999, Science.

[132]  R. Kimmich,et al.  Nuclear Magnetic Relaxation Spectroscopy in Solutions of Bovine Hemoglobin , 1971, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[133]  C. Dinarello,et al.  The IL-1 family and inflammatory diseases. , 2002, Clinical and experimental rheumatology.

[134]  A. Fourie,et al.  ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro , 2005, Nature.

[135]  S. Majumdar,et al.  T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. , 2004, Radiology.

[136]  Georg N Duda,et al.  A New Device to Detect Early Cartilage Degeneration , 2004, The American journal of sports medicine.

[137]  P A Bottomley,et al.  Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI , 2001, Magnetic resonance in medicine.

[138]  A. Maroudas,et al.  The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. , 1969, Biochimica et biophysica acta.

[139]  Carl S Winalski,et al.  Magnetic Resonance Imaging of Focal Articular Cartilage Lesions , 2003, Topics in magnetic resonance imaging : TMRI.

[140]  S. Wimperis,et al.  Detection of the interaction of sodium ions with ordered structures in biological systems. Use of the Jeener-Broekaert experiment , 1993 .

[141]  R. Reddy,et al.  Multiple-quantum filters of spin-3/2 with pulses of arbitrary flip angle. , 1994, Journal of Magnetic Resonance - Series B.

[142]  D. Burstein,et al.  Molecular (and functional) imaging of articular cartilage. , 2004, Journal of musculoskeletal & neuronal interactions.

[143]  D. Walsh,et al.  Osteoarthritis, angiogenesis and inflammation. , 2005, Rheumatology.

[144]  C. Chung,et al.  Optimum detection of biexponential relaxation using multiple-quantum filtration techniques , 1990 .

[145]  A. Borthakur,et al.  Assessment of Human Disc Degeneration and Proteoglycan Content Using T1&rgr;-weighted Magnetic Resonance Imaging , 2006, Spine.

[146]  T. Mosher,et al.  Cartilage MRI T2 relaxation time mapping: overview and applications. , 2004, Seminars in musculoskeletal radiology.

[147]  C. Peterfy,et al.  Imaging of the disease process , 2002, Current opinion in rheumatology.

[148]  Christian Beaulieu,et al.  In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation , 2005, Magnetic resonance in medicine.

[149]  Andrew J Wheaton,et al.  Reduction of residual dipolar interaction in cartilage by spin‐lock technique , 2004, Magnetic resonance in medicine.

[150]  H J Aronen,et al.  T1ρ dispersion imaging of head and neck tumors: A comparison to spin lock and magnetization transfer techniques , 1997, Journal of magnetic resonance imaging : JMRI.

[151]  S. Ashbrook,et al.  High-resolution NMR of quadrupolar nuclei in solids: the satellite-transition magic angle spinning (STMAS) experiment , 2004 .

[152]  S. Neubauer,et al.  Optimization of ECG‐triggered 3D 23Na MRI of the human heart , 2001, Magnetic resonance in medicine.

[153]  W. Rooney,et al.  A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems , 1991, NMR in biomedicine.

[154]  J C Fontecilla-Camps,et al.  Crystal structure of human trypsin 1: unexpected phosphorylation of Tyr151. , 1995, Journal of molecular biology.

[155]  J. V. D. Maarel Relaxation of spin S=3/2 in the doubly rotating tilted frame , 1989 .

[156]  Y. Itai,et al.  MR microscopy of the articular cartilage with a 1.0T permanent magnet portable MR system: preliminary results. , 2003, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[157]  J. B. Kneeland,et al.  Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. , 2004, Academic radiology.

[158]  C D Kroenke,et al.  Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. , 2001, Methods in enzymology.

[159]  Martha L. Gray,et al.  T2 and T1ρ MRI in articular cartilage systems , 2004 .

[160]  W. Ling,et al.  Selecting ordered environments in NMR of spin 3/2 nuclei via frequency-sweep pulses. , 2005, Journal of magnetic resonance.

[161]  J. B. Kneeland,et al.  T1ρ‐relaxation mapping of human femoral‐tibial cartilage in vivo , 2003 .

[162]  G. Navon,et al.  Sodium interaction with ordered structures in mammalian red blood cells detected by Na-23 double quantum NMR. , 1993, Biophysical journal.

[163]  C. A. Sholl,et al.  A relationship between nuclear spin relaxation in the laboratory and rotating frames for dipolar and quadrupolar relaxation , 1992 .

[164]  B. Hall,et al.  Cartilage Molecular Aspects , 1991 .

[165]  Andrew J Wheaton,et al.  Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging--feasibility study. , 2004, Radiology.

[166]  H J Aronen,et al.  3D spin-lock imaging of human gliomas. , 1999, Magnetic resonance imaging.

[167]  S. Wehrli,et al.  Influence of Ischemic Preconditioning on Intracellular Sodium, pH, and Cellular Energy Status in Isolated Perfused Heart , 2002, Experimental biology and medicine.

[168]  A. Lamminen,et al.  T1ρ dispersion imaging of diseased muscle tissue , 1993 .

[169]  Arijitt Borthakur,et al.  Method for reduced SAR T1ρ‐weighted MRI , 2004 .

[170]  P. S. Hubbard Nonexponential Relaxation of Rotating Three‐Spin Systems in Molecules of a Liquid , 1970 .

[171]  H. Imhof,et al.  The role of relaxation times in monitoring proteoglycan depletion in articular cartilage , 1999, Journal of magnetic resonance imaging : JMRI.

[172]  A. Virta,et al.  T1ρ of protein solutions at very low fields: Dependence on molecular weight, concentration, and structure , 1997, Magnetic resonance in medicine.

[173]  M. Weisfeldt,et al.  Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[174]  H. Ma,et al.  Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis , 2005, Nature.

[175]  J. B. Kneeland,et al.  Sodium multiple quantum spectroscopy of articular cartilage: Effects of mechanical compression , 1998, Magnetic resonance in medicine.

[176]  R M Henkelman,et al.  Effects of compression and recovery on bovine articular cartilage: appearance on MR images. , 1996, Radiology.

[177]  V. Mlynárik,et al.  Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. , 1996, Magnetic resonance imaging.

[178]  D. Hoult,et al.  The field dependence of NMR imaging. I. Laboratory assessment of signal‐to‐noise ratio and power deposition , 1986, Magnetic resonance in medicine.

[179]  J. B. Kneeland,et al.  T1ρ MR Imaging of the Human Wrist in Vivo , 2003 .

[180]  N. Lundbom,et al.  Low field T1ρ imaging of myositis , 1998 .

[181]  C. Beaulieu,et al.  Advanced MR imaging of the shoulder: dedicated cartilage techniques. , 2004, Magnetic resonance imaging clinics of North America.

[182]  M. Robson,et al.  Magnetic resonance imaging of the knee with ultrashort TE pulse sequences. , 2004, Magnetic resonance imaging.

[183]  D. Felson,et al.  The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. , 1995, Arthritis and rheumatism.

[184]  A. Redfield,et al.  Nuclear Magnetic Resonance Saturation and Rotary Saturation in Solids , 1955 .

[185]  H. S. Gutowsky,et al.  SPIN-ECHO STUDIES OF CHEMICAL EXCHANGE. II. CLOSED FORMULAS FOR TWO SITES. , 1965, The Journal of chemical physics.

[186]  A. Borthakur Sodium NMR: An noninvasive probe for proteoglycan macromolecules , 2000 .

[187]  Felix Eckstein,et al.  Toward imaging biomarkers for osteoarthritis. , 2004, Clinical orthopaedics and related research.

[188]  A. Borthakur,et al.  Correlation of T1ρ with fixed charge density in cartilage , 2004, Journal of magnetic resonance imaging : JMRI.

[189]  D. Woessner NMR relaxation of Spin , 2001 .

[190]  A. Maudsley,et al.  Biological aspects of sodium-23 imaging. , 1984, British medical bulletin.

[191]  A. Wheaton Quantitative spin -lock magnetic resonance imaging: Technical development and biomedical applications , 2005 .

[192]  C N Chen,et al.  The field dependence of NMR imaging. II. Arguments concerning an optimal field strength , 1986, Magnetic resonance in medicine.

[193]  C. Slichter Principles of magnetic resonance , 1963 .

[194]  G. Navon,et al.  The formation of a second-rank tensor in 23Na double-quantum-filtered NMR as an indicator for order in a biological tissue , 1992 .

[195]  G. Marchal,et al.  Combined T1‐T2 mapping of human femoro‐tibial cartilage with turbo‐mixed imaging at 1.5T , 2005, Journal of magnetic resonance imaging : JMRI.

[196]  C. Handley,et al.  The effects of trypsin treatment on proteoglycan biosynthesis by bovine articular cartilage. , 1985, Biochemical Journal.

[197]  G. Navon,et al.  Analysis of double-quantum-filtered NMR spectra of 23Na in biological tissues. , 1994, Journal of magnetic resonance. Series B.

[198]  J. Dunn,et al.  MR imaging and T2 mapping of femoral cartilage. , 2002, AJR. American journal of roentgenology.

[199]  L. Lohmander,et al.  The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. , 1992, The Journal of clinical investigation.

[200]  P. Wolf,et al.  The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. , 1994, American journal of public health.

[201]  R. Reddy,et al.  Detection of residual quadrupolar interaction in the human breast in vivo using sodium‐23 multiple quantum spectroscopy , 1999, Journal of magnetic resonance imaging : JMRI.

[202]  Van,et al.  Spatial variation of T2 in human articular cartilage. , 1997, Radiology.

[203]  Andrew J Wheaton,et al.  In vivo quantification of T1ρ using a multislice spin‐lock pulse sequence , 2004, Magnetic resonance in medicine.

[204]  D. Burstein,et al.  Gd‐DTPA2− as a measure of cartilage degradation , 1996, Magnetic resonance in medicine.

[205]  Ewald Moser,et al.  High-Resolution Diffusivity Imaging at 3.0 T for the Detection of Degenerative Changes: A Trypsin-Based Arthritis Model , 2003, Investigative radiology.

[206]  L. Peltonen,et al.  Genome scan for predisposing loci for distal interphalangeal joint osteoarthritis: evidence for a locus on 2q. , 1999, American journal of human genetics.

[207]  Arijitt Borthakur,et al.  Pulse sequence for multislice T1ρ‐weighted MRI , 2004 .

[208]  J. V. D. Maarel Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis , 2003 .

[209]  J. B. Kneeland,et al.  A novel approach to observing articular cartilage deformation in vitro via magnetic resonance imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[210]  Xiaojuan Li,et al.  Detection of posttraumatic cartilage injury using quantitative T1rho magnetic resonance imaging. A report of two cases with arthroscopic findings. , 2006, The Journal of bone and joint surgery. American volume.

[211]  R. Reddy,et al.  T1ρ Imaging of Murine Brain Tumors at 4 T , 2001 .

[212]  R. Reddy,et al.  Detection of Residual Quadrupolar Interaction in Human Skeletal Muscle and Brain in vivo via Multiple Quantum Filtered Sodium NMR Spectra , 1995, Magnetic resonance in medicine.

[213]  Luke Bloy,et al.  T1ρ contrast in functional magnetic resonance imaging , 2005 .

[214]  G. Navon,et al.  Proton double‐quantum filtered MRI—A new method for imaging ordered tissues , 1998, Magnetic resonance in medicine.

[215]  Jean-Pierre Ruaud,et al.  Effect of proteoglycan depletion on T2 mapping in rat patellar cartilage. , 2005, Radiology.

[216]  D. Felson,et al.  Epidemiology of hip and knee osteoarthritis. , 1988, Epidemiologic reviews.

[217]  J. B. Kneeland,et al.  Effect of IL‐1β‐induced macromolecular depletion on residual quadrupolar interaction in articular cartilage , 2002, Journal of magnetic resonance imaging : JMRI.

[218]  B. Wilbrink,et al.  The effect of human interleukin 1 on proteoglycan metabolism in human and porcine cartilage explants. , 1990, The Journal of rheumatology.