In operando tomography reveals degradation mechanisms in lamellar iron foams during redox cycling at 800 °C

[1]  Jun Kyu Lee,et al.  Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane , 2019, Applied Energy.

[2]  V. Medri,et al.  Ice-Templated Geopolymer—Fe/Mn Oxide Composites Conceived as Oxygen Carriers , 2019, Ceramics.

[3]  Jonathan A. Fan,et al.  Metal oxide redox chemistry for chemical looping processes , 2018, Nature Reviews Chemistry.

[4]  J. Banhart,et al.  Simultaneous X-ray radioscopy/tomography and energy-dispersive diffraction applied to liquid aluminium alloy foams. , 2018, Journal of synchrotron radiation.

[5]  X. Milhet,et al.  Evolution of the nanoporous microstructure of sintered Ag at high temperature using in-situ X-ray nanotomography , 2018, Acta Materialia.

[6]  R. Xiao,et al.  Performance of Oxygen Carriers with Different Porosities in Chemical Looping Water-Splitting , 2018, Energy Technology.

[7]  R. Xiao,et al.  Redox reaction induced morphology and microstructure evolution of iron oxide in chemical looping process , 2018, Energy Conversion and Management.

[8]  Hyeji Park,et al.  Effects of Powder Carrier on the Morphology and Compressive Strength of Iron Foams: Water vs Camphene , 2018, Metallurgical and Materials Transactions B.

[9]  Fanxing Li,et al.  Chemical looping at the nanoscale — challenges and opportunities , 2018, Current Opinion in Chemical Engineering.

[10]  J. Otomo,et al.  Evaluation of Microstructural Changes and Performance Degradation in Iron-Based Oxygen Carriers during Redox Cycling for Chemical Looping Systems with Image Analysis , 2018 .

[11]  Kristen L. Scotti,et al.  Freeze Casting: A Review of Processing, Microstructure and Properties via the Open Data Repository, FreezeCasting.net , 2017, 1710.00037.

[12]  Rémi Tucoulou,et al.  Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science , 2017 .

[13]  D. Dunand,et al.  Iron foams created by directional freeze casting of iron oxide, reduction and sintering , 2017 .

[14]  Wei Li,et al.  Step-wise reduction kinetics of Fe2O3 by CO/CO2 mixtures for chemical looping hydrogen generation , 2017 .

[15]  Ludger Blum,et al.  Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks , 2016 .

[16]  Doug Schmidt,et al.  A dynamic solid oxide fuel cell empowered by the built-in iron-bed solid fuel , 2016 .

[17]  C. Detavernier,et al.  Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle , 2016, Science.

[18]  Nigel P. Brandon,et al.  TauFactor: An open-source application for calculating tortuosity factors from tomographic data , 2016, SoftwareX.

[19]  V. Hacker,et al.  Recent advancements in chemical looping water splitting for the production of hydrogen , 2016 .

[20]  R. Mei,et al.  Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent , 2016 .

[21]  R. Bordia,et al.  Effect of Macropore Anisotropy on the Mechanical Response of Hierarchically Porous Ceramics , 2016 .

[22]  R. Bordia,et al.  Strength of hierarchically porous ceramics: Discrete simulations on X-ray nanotomography images , 2016 .

[23]  D. Dunand,et al.  In situ X-ray tomographic microscopy of Kirkendall pore formation and evolution during homogenization of pack-aluminized Ni-Cr wires , 2016 .

[24]  U. Schubert,et al.  Directional Solidification with Constant Ice Front Velocity in the Ice‐Templating Process   , 2016 .

[25]  R. Ritchie,et al.  Bioinspired large-scale aligned porous materials assembled with dual temperature gradients , 2015, Science Advances.

[26]  David C. Dunand,et al.  Metallic Architectures from 3D‐Printed Powder‐Based Liquid Inks , 2015 .

[27]  W. J. Quadakkers,et al.  Development of storage materials for high-temperature rechargeable oxide batteries , 2015 .

[28]  P. Novák,et al.  Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X‐Ray Tomography and Diffraction , 2015, Advanced materials.

[29]  J. Otomo,et al.  Iron oxide redox reaction with oxide ion conducting supports for hydrogen production and storage systems , 2015 .

[30]  Feng He,et al.  Perovskite promoted iron oxide for hybrid water-splitting and syngas generation with exceptional conversion , 2015 .

[31]  Rajendra K. Bordia,et al.  Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting , 2015 .

[32]  Jonathan A. Fan,et al.  Evolution of nanoscale morphology in single and binary metal oxide microparticles during reduction and oxidation processes , 2014 .

[33]  Francesco De Carlo,et al.  TomoPy: a framework for the analysis of synchrotron tomographic data , 2014, Optics & Photonics - Optical Engineering + Applications.

[34]  P. Kenesei,et al.  Combined high-energy synchrotron X-ray diffraction and computed tomography to characterize constitutive behavior of silica sand , 2014 .

[35]  L. Fan,et al.  Formation of core-shell structured composite microparticles via cyclic gas-solid reactions. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[36]  J. Banhart,et al.  White-beam X-ray radioscopy and tomography with simultaneous diffraction at the EDDI beamline. , 2013, Journal of synchrotron radiation.

[37]  C. Hébert,et al.  Reduction of nickel oxide particles by hydrogen studied in an environmental TEM , 2013, Journal of Materials Science.

[38]  Yunhui Gong,et al.  Energy Storage Characteristics of a New Rechargeable Solid Energy Storage Characteristics of a New Rechargeable Solid Oxide Iron-Air Battery Oxide Iron-Air Battery , 2014 .

[39]  M. Stampanoni,et al.  Regridding reconstruction algorithm for real-time tomographic imaging , 2012, Journal of synchrotron radiation.

[40]  Ian S. Metcalfe,et al.  Chemical looping and oxygen permeable ceramic membranes for hydrogen production – a review , 2012 .

[41]  John B. Goodenough,et al.  A novel solid oxide redox flow battery for grid energy storage , 2011 .

[42]  A. Kierzkowska,et al.  Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol−Gel , 2010 .

[43]  H. Veringa,et al.  Deactivation of iron oxide used in the steam-iron process to produce hydrogen , 2009 .

[44]  D. Young High Temperature Oxidation and Corrosion of Metals , 2008 .

[45]  Mohammad. M. Hossain,et al.  Chemical-looping combustion (CLC) for inherent CO2 separations—a review , 2008 .

[46]  S. Deville Freeze‐Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[47]  Margit Zacharias,et al.  Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. , 2007, Small.

[48]  Robert P. Dougherty,et al.  Computing Local Thickness of 3D Structures with ImageJ , 2007, Microscopy and Microanalysis.

[49]  Eduardo Saiz,et al.  Freezing as a Path to Build Complex Composites , 2006, Science.

[50]  J. Besenhard,et al.  First investigations of structural changes of the contact mass in the RESC process for hydrogen production , 2005 .

[51]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[52]  D. Bellet,et al.  Bulk observation of metal powder sintering by X-ray synchrotron microtomography , 2004 .

[53]  A. Evans,et al.  A Fundamental Model of Cyclic Instabilities in Thermal Barrier Systems , 2002 .

[54]  I. Wood,et al.  A Simple and Sensitive Method for Simultaneous High-Temperature X-ray Powder Diffraction and Thermogravimetric Analysis , 1998 .

[55]  R. Bredesen,et al.  On the oxidation of iron in CO2+CO mixtures: II. Reaction mechanisms during initial oxidation , 1991 .

[56]  N. L. Peterson,et al.  Effect of the deviation from stoichiometry on cation self-diffusion and isotope effect in wüstite, Fe1-xO , 1975 .

[57]  A. Evans,et al.  The mechanical properties of nickel oxide and their relationship to the morphology of thick oxide scales formed on nickel , 1972 .

[58]  W. Smeltzer The kinetics of wustite scale formation on iron , 1960 .

[59]  H. Engell Der Konzentrationsgradient der Eisenionen-Leerstellen in Wüstit-Zunderschichten und der mechanismus der oxydation des eisens , 1958 .

[60]  D. Dunand,et al.  Structural evolution of directionally freeze-cast iron foams during oxidation/reduction cycles , 2019, Acta Materialia.

[61]  Y. Chiang,et al.  Impact of Pore Tortuosity on Electrode Kinetics in Lithium Battery Electrodes: Study in Directionally Freeze-Cast LiNi0.8Co0.15Al0.05O2 (NCA) , 2018 .

[62]  D. Dunand,et al.  Synthesis of NiTi microtubes via the Kirkendall effect during interdiffusion of Ti-coated Ni wires , 2018 .

[63]  S. Deville Freezing Colloids: Observations, Principles, Control, and Use: Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering , 2017 .

[64]  H. Greiner,et al.  Long Term Operation of Rechargeable High Temperature Solid Oxide Batteries , 2014 .

[65]  Xuan Zhao,et al.  Cyclic Durability of a Solid Oxide Fe-Air Redox Battery Operated at 650°C , 2013 .

[66]  R. Ritchie,et al.  Real-time Quantitative Imaging of Failure Events in Materials under Load at Temperatures above 1,600 , 2012 .

[67]  Yunhui Gong,et al.  Performance of Solid Oxide Iron-Air Battery Operated at 550°C , 2013 .

[68]  B. M. Corbella,et al.  Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane , 2007 .

[69]  Anthony G. Evans,et al.  Mechanisms controlling the durability of thermal barrier coatings , 2001 .