Heuristic Homogenization of Euler and Pantographic Beams

In the present contribution, we address the following problem: is it possible to find a microstructure producing, at the macro-level and under loads of the same order of magnitude, a beam which can be both extensible and flexible? Using an asymptotic expansion and rescaling suitably the involved stiffnesses, we prove that a pantographic microstructure does induce, at the macro-level, the aforementioned desired mechanical behavior. Thus, in an analogous fashion to that of variational asymptotic methods, and following a mathematical approach resembling that used by Piola, we have employed asymptotic expansions of kinematic descriptors directly into the postulated energy functional and a heuristic homogenization procedure is presented and applied to the cases of Euler and pantographic beams.

[1]  Victor A. Eremeyev,et al.  On natural strain measures of the non-linear micropolar continuum , 2009 .

[2]  Ivan Giorgio,et al.  In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions , 2017 .

[3]  Leopoldo Greco,et al.  Wave propagation in pantographic 2D lattices with internal discontinuities , 2014, 1412.3926.

[4]  Francesco dell’Isola,et al.  Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena , 2008 .

[5]  Francesco dell’Isola,et al.  Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments , 2017 .

[6]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[7]  Ivan Giorgio,et al.  Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations , 2017 .

[8]  A. Della Corte,et al.  An explicit solution for the dynamics of a taut string of finite length carrying a traveling mass: the subsonic case , 2016 .

[9]  A. Misra,et al.  Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model , 2015 .

[10]  P. Neff,et al.  First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  E. Turco,et al.  Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations , 2016 .

[12]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[13]  Luca Placidi,et al.  A Review on Models for the 3D Statics and 2D Dynamics of Pantographic Fabrics , 2017 .

[14]  H. Altenbach,et al.  On the linear theory of micropolar plates , 2009 .

[15]  Francesco dell’Isola,et al.  Fiber rupture in sheared planar pantographic sheets: Numerical and experimental evidence , 2016 .

[16]  Ivan Giorgio,et al.  Finite-Element Analysis of Polyhedra under Point and Line Forces in Second-Strain Gradient Elasticity , 2017 .

[17]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[18]  Francesco dell’Isola,et al.  Buckling modes in pantographic lattices , 2016 .

[19]  Pierre Seppecher,et al.  Asymptotics of a non-planar rod in non-linear elasticity , 2006, Asymptot. Anal..

[20]  Luca Placidi,et al.  A second gradient formulation for a 2D fabric sheet with inextensible fibres , 2016 .

[21]  Tomasz Lekszycki,et al.  The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids , 2017 .

[22]  G. Rosi,et al.  Band gaps in the relaxed linear micromorphic continuum , 2014, 1405.3493.

[23]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[24]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[25]  Alessandro Della Corte,et al.  Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: Perspectives of continuum modeling via higher gradient continua , 2016 .

[26]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[27]  E. Turco,et al.  FREQUENCY SHIFTS INDUCED BY LARGE DEFORMATIONS IN PLANAR PANTOGRAPHIC CONTINUA , 2015 .

[28]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[29]  F. dell’Isola,et al.  Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[31]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[32]  A. Misra,et al.  Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics* , 2020 .

[33]  Francesco dell’Isola,et al.  Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions , 2017, Journal of elasticity.

[34]  Francesco dell’Isola,et al.  First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities , 2017 .

[35]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[36]  Emilio Turco,et al.  Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields , 2016 .

[37]  Francesco dell’Isola,et al.  Linear pantographic sheets: Asymptotic micro-macro models identification , 2017 .

[38]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[39]  Francesco dell’Isola,et al.  Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies , 2017 .

[40]  Luca Placidi,et al.  A review on 2D models for the description of pantographic fabrics , 2016 .

[41]  Victor A. Eremeyev,et al.  Strain gradient elasticity with geometric nonlinearities and its computational evaluation , 2015 .

[42]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[43]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[44]  Ivan Giorgio,et al.  Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures , 2016 .

[45]  A. Misra,et al.  Micromechanical model for viscoelastic materials undergoing damage , 2013 .

[46]  Luca Placidi,et al.  An Inverse Method to Get Further Analytical Solutions for a Class of Metamaterials Aimed to Validate Numerical Integrations , 2017 .

[47]  S. Müller,et al.  A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity , 2004 .

[48]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[49]  Antonio Cazzani,et al.  Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model , 2016 .

[50]  P. Seppecher,et al.  Cauchy Tetrahedron Argument Applied to Higher Contact Interactions , 2015, Archive for Rational Mechanics and Analysis.

[51]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[52]  F. Murat,et al.  Comportement asymptotique des solutions du système de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces* , 1999 .

[53]  F. dell'Isola,et al.  Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids , 2013, 1305.6744.

[54]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[55]  G. Allaire Homogenization and two-scale convergence , 1992 .

[56]  Ivan Giorgio,et al.  Pantographic 2D sheets: Discussion of some numerical investigations and potential applications , 2016 .

[57]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[58]  W. Müller,et al.  Theory and computation of higher gradient elasticity theories based on action principles , 2017 .

[59]  Francesco dell’Isola,et al.  Dynamics of 1D nonlinear pantographic continua , 2017 .

[60]  S. Antman Nonlinear problems of elasticity , 1994 .

[61]  Francesco dell’Isola,et al.  SHEARING TESTS APPLIED TO PANTOGRAPHIC STRUCTURES , 2016 .

[62]  Leopoldo Greco,et al.  Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena* , 2017, 2004.10154.

[63]  I. Giorgio,et al.  A model for elastic flexoelectric materials including strain gradient effects , 2016 .

[64]  Francesco dell’Isola,et al.  Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices , 2015 .

[65]  A. Misra,et al.  Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity , 2012 .

[66]  Ugo Andreaus,et al.  Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator , 2010 .

[67]  Ivan Giorgio,et al.  Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids , 2015 .

[68]  Luca Placidi,et al.  Towards the Design of Metamaterials with Enhanced Damage Sensitivity: Second Gradient Porous Materials , 2014 .

[69]  Ivan Giorgio,et al.  Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations , 2016 .

[70]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[71]  Francesco dell’Isola,et al.  Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives , 2017 .

[72]  A. Misra,et al.  Effect of asperity damage on shear behavior of single fracture , 2002 .

[73]  Ivan Giorgio,et al.  Extensional Elastica in large deformation as $$\Gamma $$Γ-limit of a discrete 1D mechanical system , 2017 .