Combining single-molecule manipulation and single-molecule detection.

Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery.

[1]  S. Kowalczykowski,et al.  Single-Molecule Imaging of DNA Pairing by RecA Reveals a 3-Dimensional Homology Search , 2011, Nature.

[2]  Paul Matsudaira,et al.  Detecting force-induced molecular transitions with fluorescence resonant energy transfer. , 2007, Angewandte Chemie.

[3]  Francesco S. Pavone,et al.  FIONA in the trap: the advantages of combining optical tweezers and fluorescence , 2007 .

[4]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[5]  G. Charvin,et al.  Tracking topoisomerase activity at the single-molecule level. , 2005, Annual review of biophysics and biomolecular structure.

[6]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[7]  A. Arnold,et al.  Dosage compensation is less effective in birds than in mammals , 2007, Journal of biology.

[8]  H. Gaub,et al.  Nanoapertures for AFM-based single-molecule force spectroscopy , 2013 .

[9]  Ying Gao,et al.  Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. , 2012, The Review of scientific instruments.

[10]  Wolfram Summerer,et al.  Resolving single-molecule assembled patterns with superresolution blink-microscopy. , 2010, Nano letters.

[11]  S. Iwai,et al.  Visualizing myosin–actin interaction with a genetically-encoded fluorescent strain sensor , 2008, Proceedings of the National Academy of Sciences.

[12]  Gijs J. L. Wuite,et al.  See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins , 2008, Nucleic acids research.

[13]  Toshio Ando,et al.  Filming Biomolecular Processes by High-Speed Atomic Force Microscopy , 2014, Chemical reviews.

[14]  B. Reinhard,et al.  Biocompatible force sensor with optical readout and dimensions of 6 nm3. , 2005, Nano letters.

[15]  Johannes S Kanger,et al.  UvA-DARE ( Digital Academic Repository ) Micro magnetic tweezers for nanomanipulation inside live cells , 2005 .

[16]  C. Ban,et al.  ATP alters the diffusion mechanics of MutS on mismatched DNA. , 2012, Structure.

[17]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[18]  T. Ha,et al.  SSB Functions as a Sliding Platform that Migrates on DNA via Reptation , 2011, Cell.

[19]  T. Ha,et al.  Ultrahigh-resolution optical trap with single-fluorophore sensitivity , 2011, Nature Methods.

[20]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[21]  H. Gaub,et al.  Functional assembly of aptamer binding sites by single-molecule cut-and-paste. , 2012, Nano letters.

[22]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[23]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[24]  H. Gaub,et al.  Placing individual molecules in the center of nanoapertures. , 2014, Nano letters.

[25]  An optical trap combined with three-color FRET. , 2013, Journal of the American Chemical Society.

[26]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[27]  Gijs J. L. Wuite,et al.  Counting RAD51 proteins disassembling from nucleoprotein filaments under tension , 2008, Nature.

[28]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase. , 2004, Nature.

[29]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[30]  Daniel J Müller,et al.  Force probing surfaces of living cells to molecular resolution. , 2009, Nature chemical biology.

[31]  Yufan He,et al.  Manipulating protein conformations by single-molecule AFM-FRET nanoscopy. , 2012, ACS nano.

[32]  Russell M. Taylor,et al.  Thin-foil magnetic force system for high-numerical-aperture microscopy. , 2006, The Review of scientific instruments.

[33]  Cees Dekker,et al.  Recent advances in magnetic tweezers. , 2012, Annual review of biophysics.

[34]  Hiroto Tanaka,et al.  Simultaneous Observation of Individual ATPase and Mechanical Events by a Single Myosin Molecule during Interaction with Actin , 1998, Cell.

[35]  K. Salaita,et al.  Visualizing mechanical tension across membrane receptors with a fluorescent sensor , 2011, Nature Methods.

[36]  Christoph F Schmidt,et al.  Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. , 2004, The journal of physical chemistry. B.

[37]  D E Smith,et al.  Direct observation of tube-like motion of a single polymer chain. , 1994, Science.

[38]  S. Kowalczykowski,et al.  Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy , 2013, Nature Protocols.

[39]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[40]  C. Wickersham,et al.  Tracking a molecular motor with a nanoscale optical encoder. , 2010, Nano letters.

[41]  Taekjip Ha,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[42]  Polly M Fordyce,et al.  Combined optical trapping and single-molecule fluorescence , 2003, Journal of biology.

[43]  M. Visnapuu,et al.  Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase , 2010, Nature.

[44]  R. R. Brau,et al.  IOFF generally extends fluorophore longevity in the presence of an optical trap. , 2009, Current pharmaceutical biotechnology.

[45]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[46]  Wolfgang Wende,et al.  STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA , 2013, Nature Methods.

[47]  Adrian O. Olivares,et al.  Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine , 2011, Cell.

[48]  David Bensimon,et al.  Single-molecule analysis of DNA uncoiling by a type II topoisomerase , 2000, Nature.

[49]  Seok-Cheol Hong,et al.  Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension , 2010, Proceedings of the National Academy of Sciences.

[50]  H. Gaub,et al.  Optically monitoring the mechanical assembly of single molecules. , 2009, Nature nanotechnology.

[51]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[52]  Eric C Greene,et al.  Organized arrays of individual DNA molecules tethered to supported lipid bilayers. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[53]  Julio M Fernandez,et al.  Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Masasuke Yoshida,et al.  Mechanically driven ATP synthesis by F1-ATPase , 2004, Nature.

[55]  Phillip L Geissler,et al.  Optical measurement of mechanical forces inside short DNA loops. , 2008, Biophysical journal.

[56]  K. Murakami,et al.  Single-molecule imaging of RNA polymerase-DNA interactions in real time. , 1999, Biophysical journal.

[57]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[58]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[59]  Sotaro Uemura,et al.  [Imaging and nano-manipulation of single biomolecules]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[60]  Clive R. Bagshaw,et al.  Mechanical unfolding of human telomere G-quadruplex DNA probed by integrated fluorescence and magnetic tweezers spectroscopy , 2013, Nucleic acids research.

[61]  H. Gaub,et al.  Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. , 2008, Nano letters.