Data Analysis and Chemometrics

Data mining is usually the last, but not for this less important, step of any food analysis process. It rather represents a critical phase: in fact, a proper data processing allows the extraction of useful information about the system under study from large amounts of collected data – and getting information is usually the main objective in analytical chemistry. The classical univariate approach, which considers one variable at a time, underutilizes the global data structure and offers just a partial image of it. Instead, multivariate strategies allow a more complete interpretation of data and exploitation of the information contained therein. Multivariate techniques can be used both for exploratory purposes and for qualitative or quantitative modeling. Generally, modeling is performed for predictive applications: in such cases, a thorough model validation is always required.

[1]  Jure Zupan,et al.  Introduction to Artificial Neural Network (ANN) Methods: What They Are and How to Use Them*. , 1994 .

[2]  Silvia Lanteri,et al.  Confidence intervals of the prediction ability and performance scores of classifications methods , 2001 .

[3]  Ronald D. Snee,et al.  Validation of Regression Models: Methods and Examples , 1977 .

[4]  Riccardo Leardi,et al.  A class‐modelling technique based on potential functions , 1991 .

[5]  Paolo Oliveri,et al.  Multivariate class modeling for the verification of food-authenticity claims , 2012 .

[6]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[7]  D L Massart,et al.  Use of a microcomputer for the definition of multivariate confidence regions in medical diagnosis based on clinical laboratory profiles. , 1984, Computers and biomedical research, an international journal.

[8]  Tom Fearn,et al.  Chemometric Space: Sensitivity and specificity , 2009 .

[9]  D. Massart,et al.  UNEQ: a disjoint modelling technique for pattern recognition based on normal distribution , 1986 .

[10]  Rasmus Bro,et al.  Some common misunderstandings in chemometrics , 2010 .

[11]  L. A. Stone,et al.  Computer Aided Design of Experiments , 1969 .

[12]  V.-M. Taavitsainen,et al.  Denoising and Signal-to-Noise Ratio Enhancement: Derivatives , 2009 .

[13]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[14]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[15]  H. Hotelling,et al.  Multivariate Quality Control , 1947 .

[16]  Beat Kleiner,et al.  Graphical Methods for Data Analysis , 1983 .

[17]  M. Forina,et al.  Class-modeling techniques, classic and new, for old and new problems , 2008 .

[18]  Miguel Valcárcel,et al.  Vanguard-rearguard analytical strategies , 2005 .

[19]  Ronald L. Iman,et al.  Graphs for use with the Lilliefors Test for Normal and Exponential Distributions , 1982 .

[20]  I. Jolliffe Principal Component Analysis , 2002 .

[21]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[22]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[23]  G. W. Snedecor Statistical Methods , 1964 .

[24]  Monica Casale,et al.  Comparison between classical and innovative class-modelling techniques for the characterisation of a PDO olive oil , 2011, Analytical and bioanalytical chemistry.

[25]  Pedro M. Saraiva,et al.  Denoising and Signal-to-Noise Ratio Enhancement: Wavelet Transform and Fourier Transform , 2009 .

[26]  Bruce R. Kowalski,et al.  Chemometrics, mathematics and statistics in chemistry , 1984 .

[27]  I. Jolliffe A Note on the Use of Principal Components in Regression , 1982 .

[28]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[29]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[30]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[31]  R. H. Jellema,et al.  2.06 – Variable Shift and Alignment , 2009 .

[32]  S. Wold,et al.  SIMCA: A Method for Analyzing Chemical Data in Terms of Similarity and Analogy , 1977 .

[33]  J. S. Hunter,et al.  Statistics for experimenters : an introduction to design, data analysis, and model building , 1979 .

[34]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[35]  Desire L. Massart,et al.  A non‐parametric class modelling technique , 1989 .

[36]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[37]  B. Senge,et al.  Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups , 2005 .

[38]  Genichii Taguchi,et al.  Introduction to quality engineering. designing quality into products a , 1986 .

[39]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[40]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[41]  J. Carstensen,et al.  Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping , 1998 .

[42]  D. Coomans,et al.  Potential pattern recognition in chemical and medical decision making , 1986 .

[43]  Desire L. Massart,et al.  Evaluation of the required sample size in some supervised pattern recognition techniques , 1989 .

[44]  Tom Fearn The Effect of Spectral Pre-Treatments on Interpretation , 2009 .

[45]  D. Firestone,et al.  Official methods and recommended practices of the American Oil Chemists' Society , 1990 .

[46]  Paul Geladi,et al.  Scatter plotting in multivariate data analysis , 2003 .