High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x perovskite synthesis by reactive spark plasma sintering

ABSTRACT A rising interest in entropy-stabilized oxides in recent years has been driven by their attractive functional properties. Their synthesis usually requires prolonged exposure at high temperature to promote solid-state diffusion without the application of pressure. In this work, we report the synthesis of a high entropy perovskite, Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3−x, in a relatively short time (minutes instead of hours) using a spark plasma sintering (SPS) furnace. Comparative analysis showed that conventional pressureless sintering at 1500°C for 2 h results in porous materials with large thermodynamically stable pores (tens of µm), while SPS processing produces dense materials in a single step by reactive sintering at 1475°C in 9 min. SPS is therefore an attractive route for the production, synthesis and sintering of dense high-entropy oxides.

[1]  Christina M. Rost,et al.  Influence of mass and charge disorder on the phonon thermal conductivity of entropy stabilized oxides determined by molecular dynamics simulations , 2019, Journal of Applied Physics.

[2]  J. Schoenung,et al.  Entropic phase transformation in nanocrystalline high entropy oxides , 2018, Materials Research Letters.

[3]  Yong Zhang,et al.  High-entropy functional materials , 2018, Journal of Materials Research.

[4]  P. Švec,et al.  Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level , 2018, Journal of the European Ceramic Society.

[5]  L. An,et al.  A five-component entropy-stabilized fluorite oxide , 2018, Journal of the European Ceramic Society.

[6]  Christina M. Rost,et al.  Epitaxial entropy-stabilized oxides: growth of chemically diverse phases via kinetic bombardment , 2018, MRS Communications.

[7]  Qingsong Wang,et al.  High entropy oxides for reversible energy storage , 2018, Nature Communications.

[8]  Jiaqiang Yan,et al.  Single-crystal high entropy perovskite oxide epitaxial films , 2018, Physical Review Materials.

[9]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[10]  M. Nastasi,et al.  (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics with low thermal conductivity , 2018, Journal of the American Ceramic Society.

[11]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[12]  Yuan Wu,et al.  Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering , 2018 .

[13]  V. Sglavo,et al.  Synthesis and sintering of (Mg, Co, Ni, Cu, Zn)O entropy-stabilized oxides obtained by wet chemical methods , 2018, Journal of Materials Science.

[14]  Tyler J. Harrington,et al.  A new class of high-entropy perovskite oxides , 2018 .

[15]  C. M. Handley,et al.  Phase stability and distortion in high-entropy oxides , 2017 .

[16]  H. Hahn,et al.  Rare earth and transition metal based entropy stabilised perovskite type oxides , 2017 .

[17]  J. Maria,et al.  Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study , 2017 .

[18]  S. Franger,et al.  Controlled Jahn-Teller distortion in (MgCoNiCuZn)O-based high entropy oxides , 2017 .

[19]  R. N. Kumar,et al.  Phase Evolution During Synthesis of Nanocrystalline Multicomponent (Co,Cu,Mg,Ni,Zn)O Metal Oxides with Varying ZnO Content , 2017 .

[20]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[21]  H. Hahn,et al.  Nanocrystalline multicomponent entropy stabilised transition metal oxides , 2017 .

[22]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[23]  Cormac Toher,et al.  Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations , 2016 .

[24]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[25]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[26]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[27]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[28]  S. Kang Liquid phase sintering , 2010 .

[29]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[30]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[31]  M. Rahaman Ceramic Processing and Sintering , 1995 .