DTI Longitudinal Atlas Construction as an Average of Growth Models

Existing atlas-building methods for diffusion-tensor images are not designed for longitudinal data. This paper proposes a novel longitudinal atlas-building framework explicitly accounting for temporal dependencies of longitudinal MRI data. Subject-specific growth modeling, cross-sectional atlas-building and growth modeling in atlas space are combined with statistical longitudinal modeling, resulting in a longitudinal diffusion tensor atlas. The method captures changes in morphology, while modeling temporal changes and allowing to account for covariates. The component algorithms are based on large-displacement metric mapping formulations. To effectively account for measurements sparse in time, a continuous-discrete growth model is proposed. The method is applied to a longitudinal dataset of diffusion-tensor magnetic resonance brain images of developing macaque monkeys with time-points at ages 2 weeks, 3 months, and 6 months.

[1]  P. Goldman-Rakic,et al.  The development and modifiability of the cerebral cortex. Overview. , 1982, Neurosciences Research Program bulletin.

[2]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[3]  James C. Gee,et al.  Elastic Matching of Diffusion Tensor Images , 2000, Comput. Vis. Image Underst..

[4]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[5]  Juan Ruiz-Alzola,et al.  Nonrigid registration of 3D tensor medical data , 2002, Medical Image Anal..

[6]  Dinggang Shen,et al.  Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping , 2004, NeuroImage.

[7]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[8]  M. Miller Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms , 2004, NeuroImage.

[9]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[10]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[11]  R. McKinstry,et al.  Diffusion tensor imaging and tractography of human brain development. , 2006, Neuroimaging clinics of North America.

[12]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[13]  Alan C. Evans,et al.  The NIH MRI study of normal brain development , 2006, NeuroImage.

[14]  P. Thomas Fletcher,et al.  Population Shape Regression From Random Design Data , 2007, ICCV.

[15]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[16]  Ali R. Khan,et al.  Representation of time-varying shapes in the large deformation diffeomorphic framework , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[17]  Marc Niethammer,et al.  An optimal control approach for the registration of image time-series , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[19]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[20]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.