Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit

We explore the relationship between the morphology and ionic conductivity of block copolymer electrolytes over a wide range of salt concentrations for the system polystyrene-block-poly(ethylene oxide) (PS-b-PEO, SEO) mixed with lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI). Two SEO polymers were studied, SEO(16–16) and SEO(4.9–5.5), over the salt concentration range r = 0.03–0.55. The numbers x and y in SEO(x–y) are the molecular weights of the blocks in kg mol–1, and the r value is the molar ratio of salt to ethylene oxide moieties. Small-angle X-ray scattering was used to characterize morphology and grain size at 120 °C, differential scanning calorimetry was used to study the crystallinity and the glass transition temperature of the PEO-rich microphase, and ac impedance spectroscopy was used to measure ionic conductivity as a function of temperature. The most surprising observation of our study is that ionic conductivity in the concentration regime 0.11 ≤ r ≤ 0.21 increases in SEO electrolyte...

[1]  Thomas H. Epps,et al.  Block copolymer electrolytes for rechargeable lithium batteries , 2014 .

[2]  L. Servant,et al.  Infrared and Raman study of the PEO-LiTFSI polymer electrolyte , 1998 .

[3]  Anisotropy of lamellar block copolymer grains. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Christopher Y. Li,et al.  How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes , 2014 .

[5]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[6]  Charles W. Monroe,et al.  Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions , 2003 .

[7]  Zhen‐Gang Wang Effects of ion solvation on the miscibility of binary polymer blends. , 2008, The journal of physical chemistry. B.

[8]  Sakamoto,et al.  Nucleation and growth of anisotropic grain in block copolymers near order-disorder transition. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  M. Matsen Kink grain boundaries in a block copolymer lamellar phase , 1997 .

[10]  E. Thomas,et al.  LAMELLAR DIBLOCK COPOLYMER GRAIN-BOUNDARY MORPHOLOGY .1. TWIST BOUNDARY CHARACTERIZATION , 1993 .

[11]  A. Hexemer,et al.  Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes , 2009 .

[12]  T. Lodge,et al.  High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. , 2013, Journal of the American Chemical Society.

[13]  M. Graef,et al.  Role of Grain Boundary Defects During Grain Coarsening of Lamellar Block Copolymers , 2013 .

[14]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[15]  T. Lodge,et al.  Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separation , 2015 .

[16]  S. Besner,et al.  Comparative study of poly(ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour , 1992 .

[17]  Jodie L. Lutkenhaus,et al.  Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment. , 2010, Journal of the American Chemical Society.

[18]  E. Thomas,et al.  Lamellar Diblock Copolymer Grain Boundary Morphology. 4. Tilt Boundaries , 1994 .

[19]  A. Minor,et al.  Deciphering the three-dimensional morphology of free-standing block copolymer thin films by transmission electron microscopy. , 2013, Micron.

[20]  Heng Zhang,et al.  Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte , 2014 .

[21]  T. Lodge,et al.  Mechanisms of chain diffusion in lamellar block copolymers. , 1995, Physical review letters.

[22]  J. Ottino,et al.  Modeling of transport of small molecules in polymer blends: Application of effective medium theory , 1983 .

[23]  S. Sibener,et al.  Time-Resolved Analysis of Domain Growth and Alignment of Cylinder-Forming Block Copolymers Confined within Nanopatterned Substrates , 2013 .

[24]  M. Ratner,et al.  Ion-pairing in polyether solid electrolytes and its influence on ion transport , 1981 .

[25]  J. Dygas,et al.  The influence of phase segregation on properties of semicrystalline PEO:LiTFSI electrolytes , 2008 .

[26]  Stephen Z. D. Cheng,et al.  Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a Self-Assembled Crystalline−Amorphous Diblock Copolymer , 2000 .

[27]  R. Bouchet,et al.  Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups , 2012 .

[28]  Zhen‐Gang Wang,et al.  Random isotropic structures and possible glass transitions in diblock copolymer melts. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  N. Balsara,et al.  Thermodynamics of block copolymers with and without salt. , 2014, The journal of physical chemistry. B.

[30]  I. Gunkel,et al.  Thermodynamic and Structural Changes in Ion-Containing Symmetric Diblock Copolymers: A Small-Angle X-ray Scattering Study , 2012 .

[31]  Howard A. Padmore,et al.  A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator , 2010 .

[32]  Nikos Hadjichristidis,et al.  Anionic polymerization: High vacuum techniques , 2000 .

[33]  Stephen Z. D. Cheng,et al.  Crystal Orientation Changes in Two-Dimensionally Confined Nanocylinders in a Poly(ethylene oxide)-b-polystyrene/Polystyrene Blend , 2001 .

[34]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[35]  B. A. Garetz,et al.  Effect of quench depth on grain structure in quiescently ordered block copolymers , 2001 .

[36]  C. Vincent,et al.  The effect of molecular weight on cation mobility in polymer electrolytes , 1993 .

[37]  Moon Jeong Park,et al.  Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes , 2007 .

[38]  C. Robitaille,et al.  Phase Diagrams and Conductivity Characterization of Some PEO ‐ LiX Electrolytes , 1986 .

[39]  Jan Ilavsky,et al.  Nika : software for two-dimensional data reduction , 2012 .

[40]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[41]  T. Lodge,et al.  Anisotropy of diffusion in a lamellar styrene-isoprene block copolymer , 1998 .

[42]  Garetz,et al.  Grain Growth and Defect Annihilation in Block Copolymers. , 1996, Physical review letters.

[43]  Zhen‐Gang Wang,et al.  Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts , 2010 .

[44]  C. M. Bates,et al.  ABA Triblock Brush Polymers: Synthesis, Self-Assembly, Conductivity, and Rheological Properties , 2015 .

[45]  Thomas H. Epps,et al.  Salt Doping in PEO-Containing Block Copolymers: Counterion and Concentration Effects , 2009 .

[46]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[47]  B. A. Garetz,et al.  Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte , 2014 .

[48]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[49]  T. Nishi,et al.  Three‐Dimensional Observations of Grain Boundary Morphologies in a Cylinder‐Forming Block Copolymer , 2006 .

[50]  V. Ganesan,et al.  Mechanisms Underlying Ion Transport in Lamellar Block Copolymer Membranes. , 2012, ACS macro letters.

[51]  Pawel W. Majewski,et al.  Reordering transitions during annealing of block copolymer cylinder phases. , 2016, Soft matter.

[52]  Thomas H. Epps,et al.  Ionic Conductivities of Block Copolymer Electrolytes with Various Conducting Pathways: Sample Preparation and Processing Considerations , 2012 .

[53]  O. Borodin,et al.  Effect of ion distribution on conductivity of block copolymer electrolytes. , 2009, Nano letters.

[54]  Rodger Yuan,et al.  Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes , 2013 .

[55]  G. Fredrickson,et al.  Diffusion of a symmetric block copolymer in a periodic potential , 1991 .

[56]  M. Piszcz,et al.  Electrolytes for Li-ion transport – Review , 2015 .

[57]  Marc Doyle,et al.  The Measurement of a Complete Set of Transport Properties for a Concentrated Solid Polymer Electrolyte Solution , 1995 .

[58]  K. Guarini,et al.  Structural evolution of cylindrical‐phase diblock copolymer thin films , 2004 .

[59]  A. Ryan,et al.  Polymer crystallization confined in one, two, or three dimensions , 2001 .

[60]  M. P. Stoykovich,et al.  Percolating transport and the conductive scaling relationship in lamellar block copolymers under confinement. , 2015, ACS nano.

[61]  R. Quirk,et al.  Butyllithium-initiated anionic synthesis of well-defined poly(styrene-block-ethylene oxide) block copolymers with potassium salt additives , 1996 .

[62]  Maureen H. Tang,et al.  Effect of molecular weight on conductivity of polymer electrolytes , 2011 .

[63]  M. Doeff,et al.  Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)n-LiN(CF3SO2)2 , 2000 .

[64]  T. Russell,et al.  Ion-complexation-induced changes in the interaction parameter and the chain conformation of PS-b-PMMA copolymers , 2008 .

[65]  Stephen Z. D. Cheng,et al.  Phase structures and morphologies determined by self-organization, vitrification, and crystallization: confined crystallization in an ordered lamellar phase of PEO-b-PS diblock copolymer , 2001 .

[66]  G. Rohrer,et al.  Measuring relative grain-boundary energies in block-copolymer microstructures. , 2012, Physical review letters.

[67]  D. Bertin,et al.  Charge Transport in Nanostructured PS–PEO–PS Triblock Copolymer Electrolytes , 2014 .

[68]  P. Müller‐Buschbaum,et al.  Lithium-Salt-Containing High-Molecular-Weight Polystyrene-block-Polyethylene Oxide Block Copolymer Films. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[69]  Moon Jeong Park,et al.  Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough. , 2013, ACS macro letters.

[70]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[71]  E. Helfand,et al.  Fluctuation effects in the theory of microphase separation in block copolymers , 1987 .

[72]  Michel Perrier,et al.  Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes , 1994 .

[73]  Donald R. Sadoway,et al.  Melt-Formable Block Copolymer Electrolytes for Lithium Rechargeable Batteries , 2001 .

[74]  G. Zardalidis,et al.  Ionic Conductivity, Self-Assembly, and Viscoelasticity in Poly(styrene-b-ethylene oxide) Electrolytes Doped with LiTf , 2015 .

[75]  M. Armand,et al.  Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes , 1995 .