A Scheme for Molecular Computation of Maximum Likelihood Estimators for Log-Linear Models

We propose a novel molecular computing scheme for statistical inference. We focus on the much-studied statistical inference problem of computing maximum likelihood estimators for log-linear models. Our scheme takes log-linear models to reaction systems, and the observed data to initial conditions, so that the corresponding equilibrium of each reaction system encodes the corresponding maximum likelihood estimator. The main idea is to exploit the coincidence between thermodynamic entropy and statistical entropy. We map a Maximum Entropy characterization of the maximum likelihood estimator onto a Maximum Entropy characterization of the equilibrium concentrations for the reaction system. This allows for an efficient encoding of the problem, and reveals that reaction networks are superbly suited to statistical inference tasks. Such a scheme may also provide a template to understanding how in vivo biochemical signaling pathways integrate extensive information about their environment and history.

[1]  Stephen E. Fienberg,et al.  Maximum likelihood estimation in log-linear models , 2011, 1104.3618.

[2]  Luca Cardelli,et al.  Two-domain DNA strand displacement , 2010, Mathematical Structures in Computer Science.

[3]  Michael I. Jordan Graphical Models , 2003 .

[4]  Ronald Christensen,et al.  Log-Linear Models and Logistic Regression , 1997 .

[5]  Rahul Sarpeshkar,et al.  Synthetic analog computation in living cells , 2013, Nature.

[6]  Manoj Gopalkrishnan Catalysis in Reaction Networks , 2011, Bulletin of mathematical biology.

[7]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[8]  Luca Cardelli Strand Algebras for DNA Computing , 2009, DNA.

[9]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[10]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[11]  Alicia Dickenstein,et al.  Toric dynamical systems , 2007, J. Symb. Comput..

[12]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[13]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[14]  Gunnar Fløystad,et al.  Combinatorial aspects of commutative algebra and algebraic geometry : the Abel symposium 2009 , 2011 .

[15]  V. Kulkarni,et al.  Computational design of nucleic acid feedback control circuits. , 2014, ACS synthetic biology.

[16]  Ryan P. Adams,et al.  Message Passing Inference with Chemical Reaction Networks , 2013, NIPS.

[17]  Ehud Shapiro,et al.  Bringing DNA computers to life , 2006 .

[18]  J. Gunawardena,et al.  Unlimited multistability in multisite phosphorylation systems , 2009, Nature.

[19]  Eduardo Sontag,et al.  A Petri net approach to the study of persistence in chemical reaction networks. , 2006, Mathematical biosciences.

[20]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[21]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[22]  K Oishi,et al.  Biomolecular implementation of linear I/O systems. , 2011, IET systems biology.

[23]  John Doyle,et al.  Rules of engagement , 2007, Nature.

[24]  Ezra Miller,et al.  A Geometric Approach to the Global Attractor Conjecture , 2013, SIAM J. Appl. Dyn. Syst..

[25]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[26]  L. Pachter,et al.  Algebraic Statistics for Computational Biology: Preface , 2005 .

[27]  Lulu Qian,et al.  Efficient Turing-Universal Computation with DNA Polymers , 2010, DNA.

[28]  Peter A. J. Hilbers,et al.  Computing Algebraic Functions with Biochemical Reaction Networks , 2009, Artificial Life.

[29]  Ezra Miller Theory and applications of lattice point methods for binomial ideals , 2010, ArXiv.

[30]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[31]  Lulu Qian,et al.  A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits , 2008, DNA.