Supervised Machine Learning

Who so neglects learning in his youth, loses the past and is dead for the future. – Euripides (484 BC – 406 BC), Phrixus, Frag. 927 Learning is the ability of an agent to improve its behavior based on experience. This could mean the following • The range of behaviors is expanded; the agent can do more. • The accuracy on tasks is improved; the agent can do things better. • The speed is improved; the agent can do things faster. The ability to learn is essential to any intelligent agent. As Euripides pointed out, learning involves an agent remembering its past in a way that is useful for its future. This chapter considers the problem of making a prediction as supervised learning: given a set of training examples made up of input–output pairs, predict the output of a new example where only the inputs are given. We explore four approaches to learning: choosing a single hypothesis that fits the training examples well, predicting directly from the training examples, selecting the subset of a hypothesis space consistent with the training examples, or (in Section 10.4 (page 512)) predicting based on the posterior probability distribution of hypotheses conditioned on the training examples. Chapter 10 considers learning probabilistic models. Chapter 12 covers reinforcement learning. Section 15.2 (page 701) considers learning relational representations. Learning Issues The following components are part of any learning problem: Task The behavior or task that is being improved Data The experiences that are used to improve performance in the task, usually in the form of a sequence of examples Measure of improvement How the improvement is measured – for example, new skills that were not present initially, increasing accuracy in prediction, or improved speed Consider the agent internals of Figure 2.9 (page 66). The problem of learning is to take in prior knowledge and data (e.g., about the experiences of the agent) and to create an internal representation (the knowledge base) that is used by the agent as it acts. Learning techniques face the following issues: Task Virtually any task for which an agent can get data or experiences can be learned.

[1]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[2]  Herbert A. Simon,et al.  Artificial Intelligence: An Empirical Science , 1995, Artif. Intell..

[3]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[4]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[5]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[6]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[9]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[10]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[11]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[12]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[13]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[14]  James A. Hendler,et al.  Planning: What it is, What it could be, An Introduction to the Special Issue on Planning and Scheduling , 1995, Artif. Intell..

[15]  Douglas B. Lenat,et al.  On the thresholds of knowledge , 1987, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[16]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[17]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[18]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[19]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[20]  Marek J. Sergot,et al.  A logic-based calculus of events , 1989, New Generation Computing.

[21]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[22]  Daphne Koller,et al.  Multi-Agent Influence Diagrams for Representing and Solving Games , 2001, IJCAI.

[23]  Barry Smith,et al.  SNAP and SPAN: Towards Dynamic Spatial Ontology , 2004, Spatial Cogn. Comput..

[24]  David G. Lowe,et al.  Similarity Metric Learning for a Variable-Kernel Classifier , 1995, Neural Computation.

[25]  Noel Sharkey,et al.  The Ethical Frontiers of Robotics , 2008, Science.

[26]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  Hector J. Levesque,et al.  On our best behaviour , 2014, Artif. Intell..

[29]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[30]  P. Wakker Prospect Theory: Frontmatter , 2010 .

[31]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[32]  Philip E. Agre,et al.  Computational Research on Interaction and Agency , 1995, Artif. Intell..

[33]  G. Shafer,et al.  Expected Utility Hypotheses and the Allais Paradox. , 1982 .

[34]  David Haussler,et al.  Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework , 1988, Artif. Intell..

[35]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[36]  P. Pandurang Nayak,et al.  Remote Agent: To Boldly Go Where No AI System Has Gone Before , 1998, Artif. Intell..

[37]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[38]  Ying Zhang,et al.  Constraint Nets: A Semantic Model for Hybrid Dynamic Systems , 1995, Theor. Comput. Sci..

[39]  Bruce W. Ballard,et al.  The *-Minimax Search Procedure for Trees Containing Chance Nodes , 1983, Artif. Intell..

[40]  Donald E. Knuth,et al.  The Solution for the Branching Factor of the Alpha-Beta Pruning Algorithm , 1981, ICALP.

[41]  Manuela M. Veloso,et al.  Multiagent learning using a variable learning rate , 2002, Artif. Intell..

[42]  Jesse Hoey,et al.  The use of an intelligent prompting system for people with dementia , 2007, Interactions.

[43]  Daniel G. Bobrow Artificial Intelligence in Perspective: A Retrospective on Fifty Volumes of the Artificial Intelligence Journal , 1993, Artif. Intell..

[44]  David Kirsh,et al.  Foundations of AI: The Big Issues , 1991, Artif. Intell..

[45]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[46]  Wray L. Buntine,et al.  Learning classification trees , 1992 .

[47]  Warren B. Powell,et al.  Energy and Uncertainty: Models and Algorithms for Complex Energy Systems , 2014, AI Mag..

[48]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[49]  Bruce G. Buchanan,et al.  Dendral and Meta-Dendral: Their Applications Dimension , 1978, Artif. Intell..

[50]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[51]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[52]  Peter Struss,et al.  Qualitative futures , 2006, The Knowledge Engineering Review.

[53]  Ana Gabriela Maguitman,et al.  Logical models of argument , 2000, CSUR.

[54]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[55]  Brian Cantwell Smith,et al.  The Owl and the Electric Encyclopedia , 1991, Artif. Intell..

[56]  P. Bickel,et al.  Sex Bias in Graduate Admissions: Data from Berkeley , 1975, Science.

[57]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[58]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[59]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[60]  Kenneth A. Bowen Meta-level programming and knowledge representation , 2009, New Generation Computing.

[61]  Barbara J. Grosz,et al.  What Question Would Turing Pose Today? , 2012, AI Mag..

[62]  Peter Norvig,et al.  The Unreasonable Effectiveness of Data , 2009, IEEE Intelligent Systems.

[63]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[64]  David Poole,et al.  The Independent Choice Logic for Modelling Multiple Agents Under Uncertainty , 1997, Artif. Intell..

[65]  Hao Wang,et al.  Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..

[66]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[67]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[68]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[69]  Yoav Goldberg,et al.  A Primer on Neural Network Models for Natural Language Processing , 2015, J. Artif. Intell. Res..

[70]  Subbarao Kambhampati,et al.  Planning as Refinement Search: A Unified Framework for Evaluating Design Tradeoffs in Partial-Order Planning , 1995, Artif. Intell..

[71]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[72]  Peter Stone,et al.  A Multiagent Approach to Autonomous Intersection Management , 2008, J. Artif. Intell. Res..

[73]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[74]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[75]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[76]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[77]  I. Lakatos,et al.  Proofs and Refutations: Frontmatter , 1976 .

[78]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[79]  Daniel S. Weld QUALITATIVE PHYSICS: ALBATROSS OR EAGLE? 1 , 1992, Comput. Intell..

[80]  Manuela M. Veloso,et al.  Multiagent Systems: A Survey from a Machine Learning Perspective , 2000, Auton. Robots.

[81]  Jian Cheng,et al.  AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks , 2000, J. Artif. Intell. Res..

[82]  Hector J. Levesque,et al.  Foundations of a Functional Approach to Knowledge Representation , 1984, Artif. Intell..

[83]  Mark S. Boddy,et al.  Deliberation Scheduling for Problem Solving in Time-Constrained Environments , 1994, Artif. Intell..

[84]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[85]  Gerhard Weikum,et al.  YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.

[86]  Leslie Pack Kaelbling,et al.  A Situated View of Representation and Control , 1995, Artif. Intell..

[87]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[88]  Prospect Theory by Peter P. Wakker , 2010 .

[89]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[90]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[91]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[92]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[93]  Stuart J. Russell Rationality and Intelligence , 1995, IJCAI.

[94]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Robert A. Kowalski,et al.  The early years of logic programming , 1988, CACM.

[96]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[97]  James A. Hendler,et al.  Why the Data Train Needs Semantic Rails , 2015, AI Mag..

[98]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..