Carbon nanotube reinforced cementitious composites: An overview

Abstract In the construction sector, interest and exploration work within the field of carbon materials have been ongoing for many years. Although carbon fibers have already been applied to cementitious composites, carbon nanotubes (CNTs), as nanomaterials, have received widespread attention as a result of their unique multifunctional properties within the context of engineered materials. This article focuses on the research advances of CNT dispersion and CNT reinforcement on the mechanical, electrical and piezoresistive properties of cementitious composites. Sonication and surfactants, as the commonly used techniques for CNT dispersion, are introduced for CNT/CNT dispersion characterization. Four reinforcing mechanisms of CNTs in cement matrices are summarized. Various factors that work towards an effect on the mechanical, electrical and piezoresistive properties of CNTs are reported, including CNT size, CNT concentration and lattice defects on the CNT structure. In addition, the effect of CNTs on the workability, hydration process and autogenous shrinkage of cement paste are discussed.

[1]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[2]  Giuseppe Andrea Ferro,et al.  Influence of carbon nanotubes structure on the mechanical behavior of cement composites , 2009 .

[3]  Filippo Ubertini,et al.  Natural frequencies identification of a reinforced concrete beam using carbon nanotube cement-based sensors , 2014 .

[4]  L. O. Ladeira,et al.  Using Converter Dust to Produce Low Cost Cementitious Composites by in situ Carbon Nanotube and Nanofiber Synthesis , 2011, Materials.

[5]  P. Pötschke,et al.  Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers , 2009 .

[6]  Kenneth A. Smith,et al.  Reversible sidewall functionalization of buckytubes , 1999 .

[7]  M. Monthioux,et al.  Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation , 2001 .

[8]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[9]  W. Duan,et al.  Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes , 2014 .

[10]  Thomas O. Mason,et al.  AC-impedance response of multi-walled carbon nanotube/cement composites , 2006 .

[11]  Chao Liu,et al.  A new smart traffic monitoring method using embedded cement-based piezoelectric sensors , 2015 .

[12]  Rafat Siddique,et al.  Effect of carbon nanotubes on properties of cement mortars , 2014 .

[13]  Guijun Xian,et al.  Damping Performances of Carbon Nanotube Reinforced Cement Composite , 2015 .

[14]  Nadia Grossiord,et al.  Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution , 2007 .

[15]  B. Gu,et al.  Single electron emission from the closed-tips of single-walled carbon nanotubes. , 2004, The Journal of chemical physics.

[16]  A. Kwade,et al.  Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge , 2008 .

[17]  Jinping Ou,et al.  Dispersion of Carbon Nanotubes in Cement-Based Composites and Its Influence on the Piezoresistivities of Composites , 2009 .

[18]  A. G. Ryabenko,et al.  UV-VIS-NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy , 2004 .

[19]  Surendra P. Shah,et al.  Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials , 2012 .

[20]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[21]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[22]  Rashid K. Abu Al-Rub,et al.  Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers , 2012 .

[23]  A. Chaipanich,et al.  Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials , 2011 .

[24]  Xun Yu,et al.  Sensing Mechanism of Self-Monitoring CNT Cementitious Composite , 2014 .

[25]  T. Ebbesen,et al.  Decoration of carbon nanotubes , 1996 .

[26]  Ardavan Yazdanbakhsh,et al.  The theoretical maximum achievable dispersion of nanoinclusions in cement paste , 2012 .

[27]  François Béguin,et al.  Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology , 2004 .

[28]  R. Bandyopadhyaya,et al.  Stabilization of Individual Carbon Nanotubes in Aqueous Solutions , 2002 .

[29]  Vesa Penttala,et al.  A novel cement-based hybrid material , 2009 .

[30]  Govind,et al.  Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties , 2013 .

[31]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[32]  A. Harris,et al.  Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts. , 2009, Environmental science & technology.

[33]  Y. Kawazoe,et al.  Emission probabilities of π electrons in carbon naonotubes , 2002 .

[34]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[35]  Kwang-Ryeol Lee,et al.  Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups , 2011 .

[36]  B. Gu,et al.  Robust linear dependence of thermal conductance on radial strain in carbon nanotubes , 2012 .

[37]  Rashid K. Abu Al-Rub,et al.  Carbon Nanotubes and Carbon Nanofibers for Enhancing the Mechanical Properties of Nanocomposite Cementitious Materials , 2011 .

[38]  Seunghun Hong,et al.  Nanotube electronics: a flexible approach to mobility. , 2007, Nature nanotechnology.

[39]  B. Jönsson Surfactants and Polymers in Aqueous Solution , 1998 .

[40]  S. Hanehara,et al.  Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer , 2000 .

[41]  B. Gu,et al.  Dimensional effects on field emission properties of the body for single-walled carbon nanotube , 2001 .

[42]  J. Dolado,et al.  High-Performance Nanostructured Materials for Construction , 2004 .

[43]  D. Colbert,et al.  Dissolution of Full-Length Single-Walled Carbon Nanotubes , 2001 .

[44]  Eric A. Grulke,et al.  Dispersion of Carbon Nanotubes in Liquids , 2003 .

[45]  Habeom Lee,et al.  Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio , 2014 .

[46]  A. Mukherjee,et al.  Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties , 2005 .

[47]  K. Sobolev,et al.  THE EFFECT OF FUNCTIONALIZED CARBON NANOTUBES ON THE PERFORMANCE OF CEMENT COMPOSITES , 2013 .

[48]  L. Picton,et al.  Analysis of a complex polysaccharide (gum arabic) by multi-angle laser light scattering coupled on-line to size exclusion chromatography and flow field flow fractionation. , 2000 .

[49]  Hui Li,et al.  The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites , 2009 .

[50]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[51]  F. K. Hansen,et al.  The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment , 2012 .

[52]  John W. Gillespie,et al.  Modeling the effect of statistical variations in length and diameter of randomly oriented CNTs on the properties of CNT reinforced nanocomposites , 2012 .

[53]  H. Lee,et al.  The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction , 2016 .

[54]  Kshitij Gupta,et al.  Damping studies in fiber-reinforced composites : a review , 1999 .

[55]  G. Du,et al.  Synthesis, microstructure and electrical conductivity of carbon nanotube–alumina nanocomposites , 2009 .

[56]  L. Coppola,et al.  The influence of AC and DC electrical resistance and piezoresistivity measurements of CNTs/Cement composites , 2013 .

[57]  Habeom Lee,et al.  Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites , 2016 .

[58]  E. Tazawa Autogenous Shrinkage of Concrete , 1999 .

[59]  Xiaohua Zhao,et al.  Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites , 2007 .

[60]  Jinping Ou,et al.  Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials , 2011 .

[61]  Xun Yu,et al.  Effect of Surfactants on Pressure-Sensitivity of CNT Filled Cement Mortar Composites , 2014, Front. Mater..

[62]  Haeng-Ki Lee,et al.  Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites , 2012 .

[63]  B. Gu,et al.  Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. , 2001, Physical review letters.

[64]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[65]  Q. Gong,et al.  π–π Interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites , 2005 .

[66]  I. Szleifer,et al.  Polymers and carbon nanotubes : dimensionality, interactions and nanotechnology , 2005 .

[67]  V. Pillai,et al.  Tuning the Wetting Properties of Multiwalled Carbon Nanotubes by Surface Functionalization , 2008 .

[68]  J. Qiu,et al.  MULTI-WALLED CARBON NANOTUBES MODIFIED BY POLY(VINYL PYRROLIDONE): MULTI-WALLED CARBON NANOTUBES MODIFIED BY POLY(VINYL PYRROLIDONE) , 2007 .

[69]  Eil Kwon,et al.  Sensing properties of CNT-filled cement-based stress sensors , 2011 .

[70]  Nemkumar Banthia,et al.  Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing , 2012 .

[71]  Maria S. Konsta-Gdoutos,et al.  Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites , 2010 .

[72]  A. Ćwirzeń,et al.  Properties of high yield synthesised carbon nano fibres/Portland cement composite , 2009 .

[73]  Gad Marom,et al.  Dispersions of Surface‐Modified Carbon Nanotubes in Water‐Soluble and Water‐Insoluble Polymers , 2006 .

[74]  Gen-wei Wang,et al.  The stability of a vertical single-walled carbon nanotube under its own weight , 2004 .

[75]  Xiaohua Zhao,et al.  Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes , 2005 .

[76]  Jinping Ou,et al.  Experimental study on use of nickel powder-filled Portland cement-based composite for fabrication of piezoresistive sensors with high sensitivity , 2009 .

[77]  H. Wagner,et al.  The role of surfactants in dispersion of carbon nanotubes. , 2006, Advances in colloid and interface science.

[78]  D. Koziej,et al.  Impact of sonication pretreatment on carbon nanotubes: A transmission electron microscopy study , 2013 .

[79]  A. Nasibulin,et al.  The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review , 2003 .

[80]  W. Pan,et al.  Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites , 2009 .

[81]  H. Kanoh,et al.  Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. , 2007, Nano letters.

[82]  Su-Tae Kang,et al.  The Characteristics of CNT/Cement Composites with Acid-Treated MWCNTs , 2015 .

[83]  Maria S. Konsta-Gdoutos,et al.  Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures , 2014 .

[84]  Francis Gerard Collins,et al.  Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective , 2011 .

[85]  D. Chung Electrically conductive cement-based materials , 2004 .

[86]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[87]  Suryasarathi Bose,et al.  Carbon Nanotube Based Composites- A Review , 2005 .

[88]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[89]  Linda S. Schadler,et al.  Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites , 2003 .

[90]  Rashid K. Abu Al-Rub,et al.  On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites , 2012 .

[91]  Pedro Garcés,et al.  Performance of cement-based sensors with CNT for strain sensing , 2016 .

[92]  Bryan M. Tyson Carbon nanotube and nanofiber reinforcement for improving the flexural strength and fracture toughness of portland cement paste , 2012 .

[93]  Yezi You,et al.  Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization , 2004 .

[94]  Y. Kawazoe,et al.  Finite size effects in carbon nanotubes , 2000 .

[95]  Shi-lang Xu,et al.  Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste , 2015 .

[96]  N. Yazdani,et al.  Effect of Carbon Nanotube Size on Compressive Strengths of Nanotube Reinforced Cementitious Composites , 2014 .

[97]  Theodore E. Matikas,et al.  The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars , 2015, Smart Structures.

[98]  Germano S. Iannacchione,et al.  Off-axis Thermal Properties of Carbon Nanotube Films , 2005 .

[99]  Luigi Coppola,et al.  Electrical Properties of Carbon Nanotubes Cement Composites for Monitoring Stress Conditions in Concrete Structures , 2011 .

[100]  Mohamed Saafi,et al.  Wireless and embedded carbon nanotube networks for damage detection in concrete structures , 2009, Nanotechnology.

[101]  Jinyu Pang,et al.  Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127 , 2010 .

[102]  A. Ćwirzeń,et al.  Synthesis of carbon nanotubes and nanofibers on silica and cement matrix materials , 2009 .

[103]  T. Vo,et al.  Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study , 2013 .

[104]  Zhongfang Chen,et al.  Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes. , 2005, Chemical reviews.

[105]  Hong Chen,et al.  Growth of the [110] Oriented TiO2 Nanorods on ITO Substrates by Sputtering Technique for Dye-Sensitized Solar Cells , 2014, Front. Mater..

[106]  S. H. Alsayed,et al.  Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar , 2011 .

[107]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[108]  Vesa Penttala,et al.  Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites , 2008 .

[109]  Y. Kawazoe,et al.  Qualitative and quantitative descriptions on the localized electronic structure in single-walled carbon nanotubes , 2002 .

[110]  J. Loos,et al.  Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy. , 2005, Analytical chemistry.

[111]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[112]  Edurne Erkizia,et al.  Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions , 2006 .

[113]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[114]  Surendra P. Shah,et al.  Nanoscale Modification of Cementitious Materials , 2009 .

[115]  O. Regev,et al.  WS2 nanotube – Reinforced cement: Dispersion matters , 2015 .

[116]  C. Marsh,et al.  Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar , 2015 .

[117]  S. Bachilo,et al.  Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Radical Polymerization of Sodium 4-Styrenesulfonate , 2004 .

[118]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[119]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[120]  Nagaraj R. Banapurmath,et al.  Experimental Investigation on Effect of Carbon Nanotubes and Carbon Fibres on the Behavior of Plain Cement Mortar Composite Round Bars under Direct Tension , 2011 .

[121]  Thomas Hielscher,et al.  Ultrasonic Production of Nano-Size Dispersions and Emulsions , 2005, 0708.1831.

[122]  Filippo Ubertini,et al.  Carbon nanotube cement-based transducers for dynamic sensing of strain , 2013 .

[123]  V. C. Moore,et al.  The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[124]  A. Nasibulin,et al.  A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles , 2013 .

[125]  Gang Zhang,et al.  Effect of substitutional atoms in the tip on field-emission properties of capped carbon nanotubes , 2002 .

[126]  James J. Beaudoin,et al.  Carbon Nanotubes and their Application in the Construction Industry , 2004 .

[127]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[128]  C. Bakis,et al.  Interfacial damping characteristics of carbon nanotube-based composites , 2004 .

[129]  R. Krishnamoorti,et al.  Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. , 2004, Journal of the American Chemical Society.

[130]  J. Luh,et al.  CARBON NANOTUBE/CEMENT COMPOSITES - EARLY RESULTS AND POTENTIAL APPLICATIONS , 2005 .

[131]  Francis Gerard Collins,et al.  The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures , 2012 .

[132]  A. H. Korayem,et al.  Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes , 2015 .

[133]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[134]  Kevin Kendall,et al.  The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[135]  Zeyu Lu,et al.  Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties , 2015 .

[136]  Haeng-Ki Lee,et al.  Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume , 2014 .

[137]  Bing-Lin Gu,et al.  First-principles study on morphology and mechanical properties of single-walled carbon nanotube , 2001 .

[138]  David Tománek,et al.  A novel hybrid carbon material. , 2007, Nature nanotechnology.

[139]  Jinping Ou,et al.  Review of nanocarbon-engineered multifunctional cementitious composites , 2015 .

[140]  D. Lin,et al.  Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. , 2008, Environmental science & technology.

[141]  B. Andrawes,et al.  Finite element analysis of carbon nanotube/cement composite with degraded bond strength , 2010 .

[142]  Daniel E. Resasco,et al.  Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS , 2003 .

[143]  日本コンクリート工学協会,et al.  Autogenous shrinkage of concrete : proceedings of the international workshop, organised by JCI (Japan Concrete Institute), Hiroshima, June 13-14, 1998 , 1999 .

[144]  Eil Kwon,et al.  A carbon nanotube/cement composite with piezoresistive properties , 2009 .

[145]  Jing Sun,et al.  Production of aqueous colloidal dispersions of carbon nanotubes. , 2003, Journal of colloid and interface science.

[146]  Ardavan Yazdanbakhsh,et al.  Carbon Nano Filaments in Cementitious Materials: Some Issues on Dispersion and Interfacial Bond , 2009, SP-267: Nanotechnology of Concrete: The Next Big Thing is Small.

[147]  P. Das,et al.  PROCESSING AND PROPERTIES OF CARBON NANOTUBE/ALUMINA NANOCOMPOSITES: A REVIEW , 2014 .

[148]  P. Scharff,et al.  Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes , 2000 .

[149]  John Parthenios,et al.  Chemical oxidation of multiwalled carbon nanotubes , 2008 .

[150]  Shiling Yuan,et al.  Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes. , 2007, Journal of nanoscience and nanotechnology.

[151]  Jinping Ou,et al.  Effect of water content on the piezoresistivity of MWNT/cement composites , 2010 .

[152]  S. Amico,et al.  Effect of sonication on thermo-mechanical properties of epoxy nanocomposites with carboxylated-SWNT , 2009 .

[153]  Young Soo Choi,et al.  Mechanical Properties and Nondestructive Testing of Advanced Materials 2014 , 2013 .

[154]  P. Pötschke,et al.  Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time , 2010 .

[155]  Vesa Penttala,et al.  SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles , 2009 .

[156]  G. Chan,et al.  Growth of Cement Hydration Products on Single‐Walled Carbon Nanotubes , 2009 .

[157]  A. Dalton,et al.  Microscopy studies of nanotube-conjugated polymer interactions , 2001 .

[158]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[159]  Jinping Ou,et al.  In situ growth of carbon nanotubes/carbon nanofibers on cement/mineral admixture particles: A review , 2013 .

[160]  R. Fangueiro,et al.  Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique , 2015 .

[161]  Hui Li,et al.  Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites , 2006 .

[162]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .