Characterization of electrostatic turbulent fluxes in tokamak edge plasmas

A parametrization is presented for the transport from electrostatic turbulence in tokamak edge plasmas. Employing a nonlinear drift wave turbulence simulation, transport coefficients are obtained as functions of a density gradient, temperature gradients, and an external E×B shear parameter. An external radial electric field, Er, is passed to the turbulence model as a background E×B shear flow which suppresses the radial flux together with the Reynolds stress induced electric fields. In a multidimensional parameter space, the transport coefficients exhibit a nonmonotonic dependence on the density and temperature gradients that is unique to the low to high confinement transition.

[1]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[2]  Patrick H. Diamond,et al.  Theory of mean poloidal flow generation by turbulence , 1991 .

[3]  J. C. Wesley,et al.  Neoclassical islands, ?-limits, error fields and ELMs in reactor scale tokamaks , 1999 .

[4]  Bruce D. Scott The character of transport caused by E×B drift turbulence , 2003 .

[5]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[6]  Y. Hamada,et al.  Observation of the fast potential change at L-H transition by a heavy-ion-beam probe on JFT-2M. , 2002, Physical review letters.

[7]  A. Hubbard,et al.  Variation of edge gradients with heat flux across L-H and H-L transitions in Alcator C-Mod , 2002 .

[8]  E. C. Crume,et al.  Bifurcation theory of poloidal rotation in tokamaks: A model for L-H transition. , 1989, Physical review letters.

[9]  F. Wagner,et al.  Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak , 1982 .

[10]  L. Giannone,et al.  Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX , 1995 .

[11]  A. Hasegawa,et al.  A collisional drift wave description of plasma edge turbulence , 1984 .

[12]  D. Ryutov,et al.  Two-dimensional electric fields and drifts near the magnetic separatrix in divertor tokamaks , 1999 .

[13]  Hasegawa,et al.  Self-organization of electrostatic turbulence in a cylindrical plasma. , 1987, Physical review letters.

[14]  B. Braams Radiative Divertor Modelling for ITER and TPX , 1996 .

[15]  F. Wagner,et al.  Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX , 1984 .

[16]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[17]  D. Coster,et al.  Coupling of perpendicular transport in turbulence and divertor codes , 2002 .

[18]  Bruce D. Scott,et al.  An implicit simulation of drift-wave turbulence in a sheared magnetic field , 1988 .

[19]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[20]  S. Camargo,et al.  Resistive drift‐wave turbulence , 1995 .

[21]  S. Voskoboynikov,et al.  Simulation of tokamak edge plasma including self-consistent electric fields , 2001 .

[22]  J. W. Connor,et al.  Shear, periodicity, and plasma ballooning modes , 1978 .

[23]  B. Scott The mechanism of self-sustainment in collisional drift wave turbulence , 1992 .

[24]  F. Hinton,et al.  Determination of the electric field near a separatrix in diverted tokamaks , 1994 .

[25]  D. P. Coster,et al.  Effects of resistive drift wave turbulence on tokamak edge transport , 2004 .

[26]  Robert L. Dewar,et al.  Plasma Physics for Nuclear Fusion , 1979 .