Interlocked DNA nanostructures controlled by a reversible logic circuit

DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems.

[1]  Michael Famulok,et al.  Input-Dependent Induction of Oligonucleotide Structural Motifs for Performing Molecular Logic , 2012, Journal of the American Chemical Society.

[2]  Dmitry M Kolpashchikov,et al.  Boolean control of aptamer binding states. , 2005, Journal of the American Chemical Society.

[3]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[4]  Michael Famulok,et al.  Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology , 2013, Nucleic acids research.

[5]  Chengde Mao,et al.  Putting a brake on an autonomous DNA nanomotor. , 2004, Journal of the American Chemical Society.

[6]  Itamar Willner,et al.  pH-programmable DNA logic arrays powered by modular DNAzyme libraries. , 2012, Nano letters.

[7]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[8]  Itamar Willner,et al.  Au nanoparticle/DNA rotaxane hybrid nanostructures exhibiting switchable fluorescence properties. , 2013, Nano letters.

[9]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[10]  Jonathan Bath,et al.  Reversible logic circuits made of DNA. , 2011, Journal of the American Chemical Society.

[11]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[12]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[13]  Itamar Willner,et al.  A three-station DNA catenane rotary motor with controlled directionality. , 2013, Nano letters.

[14]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[15]  Dongsheng Liu,et al.  Light-driven conformational switch of i-motif DNA. , 2007, Angewandte Chemie.

[16]  M. Famulok,et al.  A novel family of structurally stable double stranded DNA catenanes. , 2014, Chemical communications.

[17]  E. Pines,et al.  The pH jump: a rapid modulation of pH of aqueous solutions by a laser pulse , 1981 .

[18]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[19]  Jean-Louis Mergny,et al.  DNA duplex–quadruplex exchange as the basis for a nanomolecular machine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Tim Liedl,et al.  A surface-bound DNA switch driven by a chemical oscillator. , 2006, Angewandte Chemie.

[21]  Alexander Heckel,et al.  Construction of a structurally defined double-stranded DNA catenane. , 2011, Nano letters.

[22]  S. Balasubramanian,et al.  A reversible pH-driven DNA nanoswitch array. , 2006, Journal of the American Chemical Society.

[23]  D. Stefanovic,et al.  Deoxyribozyme-based half-adder. , 2003, Journal of the American Chemical Society.

[24]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[25]  S. Balasubramanian,et al.  DNA molecular motor driven micromechanical cantilever arrays. , 2005, Journal of the American Chemical Society.

[26]  Tao Li,et al.  G-quadruplex-based DNAzyme for sensitive mercury detection with the naked eye. , 2009, Chemical communications.

[27]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[28]  Shinzi Ogasawara,et al.  Autonomous DNA computing machine based on photochemical gate transition. , 2008, Journal of the American Chemical Society.

[29]  Weihong Tan,et al.  A Single DNA Molecule Nanomotor , 2002 .

[30]  R. Levine,et al.  DNA computing circuits using libraries of DNAzyme subunits. , 2010, Nature nanotechnology.

[31]  Knut Rurack,et al.  An ionically driven molecular IMPLICATION gate operating in fluorescence mode. , 2007, Chemistry.

[32]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[33]  E. Wang,et al.  Base-pairing directed folding of a bimolecular G-quadruplex: new insights into G-quadruplex-based DNAzymes. , 2009, Chemistry.

[34]  Itamar Willner,et al.  DNA machines: bipedal walker and stepper. , 2011, Nano letters.

[35]  S. Balasubramanian,et al.  A proton-fuelled DNA nanomachine. , 2003, Angewandte Chemie.

[36]  F. Simmel,et al.  Switching the conformation of a DNA molecule with a chemical oscillator. , 2005, Nano letters.

[37]  N. Pierce,et al.  A synthetic DNA walker for molecular transport. , 2004, Journal of the American Chemical Society.

[38]  Masahiro Irie Light-induced reversible pH change , 1983 .

[39]  Itamar Willner,et al.  Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.

[40]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[41]  Itamar Willner,et al.  Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines , 2013, Nature Communications.

[42]  Michael Famulok,et al.  I-motif-programmed functionalization of DNA nanocircles. , 2013, Journal of the American Chemical Society.

[43]  Tao Li,et al.  Potassium-lead-switched G-quadruplexes: a new class of DNA logic gates. , 2009, Journal of the American Chemical Society.

[44]  K. Szaciłowski Digital information processing in molecular systems. , 2008, Chemical reviews.

[45]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[46]  Itamar Willner,et al.  Autonomous control of interfacial electron transfer and the activation of DNA machines by an oscillatory pH system. , 2013, Nano letters.

[47]  Konrad Szaciłowski,et al.  Digital Information Processing in Molecular Systems , 2008 .

[48]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[49]  Itamar Willner,et al.  Parallel Analysis of Two Analytes in Solutions or on Surfaces by Using a Bifunctional Aptamer: Applications for Biosensing and Logic Gate Operations , 2008, Chembiochem : a European journal of chemical biology.

[50]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[51]  Itamar Willner,et al.  All-DNA finite-state automata with finite memory , 2010, Proceedings of the National Academy of Sciences.

[52]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[53]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.