SoLid: a short baseline reactor neutrino experiment

The SoLid experiment, short for Search for Oscillations with a Lithium-6 detector, is a new generation neutrino experiment which tries to address the key challenges for high precision reactor neutrino measurements at very short distances from a reactor core and with little or no overburden. The primary goal of the SoLid experiment is to perform a precise measurement of the electron antineutrino energy spectrum and flux and to search for very short distance neutrino oscillations as a probe of eV-scale sterile neutrinos. This paper describes the SoLid detection principle, the mechanical design and the construction of the detector. It then reports on the installation and commissioning on site near the BR2 reactor, Belgium, and finally highlights its performance in terms of detector response and calibration.

[1]  P. T. Surukuchi,et al.  Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR , 2020, 2006.11210.

[2]  P. Huber,et al.  Sterile neutrinos and the global reactor antineutrino dataset , 2020, 2005.01756.

[3]  V. Savu,et al.  Accurate Measurement of the Electron Antineutrino Yield of ^{235}U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data. , 2020, Physical review letters.

[4]  A. Serebrov,et al.  Analysis of the Results of the Neutrino-4 Experiment on the Search for the Sterile Neutrino and Comparison with Results of Other Experiments , 2020, JETP Letters.

[5]  V. Savu,et al.  Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data , 2019, 1912.06582.

[6]  Valentin Pestel Détection de neutrinos auprès du réacteur BR2 : analyse des premières données de l'expérience SoLid , 2019 .

[7]  C. Giunti,et al.  The gallium anomaly revisited , 2019, Physics Letters B.

[8]  I. Pepe,et al.  Neutrinos Angra experiment: commissioning and first operational measurements , 2018, Journal of Instrumentation.

[9]  Nick Ryder,et al.  Commissioning and operation of the readout system for the SoLid neutrino detector , 2018, Journal of Instrumentation.

[10]  M. Labare,et al.  Development of a quality assurance process for the SoLid experiment , 2018, Journal of Instrumentation.

[11]  P. T. Surukuchi,et al.  The PROSPECT reactor antineutrino experiment , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[12]  V. Golovtsov,et al.  Sterile Neutrino Search in the Neutrino-4 Experiment at the SM-3 Reactor , 2018, Physics of Particles and Nuclei.

[13]  Nick Ryder,et al.  Optimisation of the scintillation light collection and uniformity for the SoLid experiment , 2018, Journal of Instrumentation.

[14]  J. Kostensalo,et al.  First-forbidden transitions in the reactor anomaly , 2018, Physical Review C.

[15]  P. T. Surukuchi,et al.  Performance of a segmented 6Li-loaded liquid scintillator detector for the PROSPECT experiment , 2018, Journal of Instrumentation.

[16]  N. Allemandou,et al.  The STEREO experiment , 2018, Journal of Instrumentation.

[17]  T. Schwetz,et al.  Updated global analysis of neutrino oscillations in the presence of eV-scale sterile neutrinos , 2018, Journal of High Energy Physics.

[18]  Nick Ryder,et al.  Performance of a full scale prototype detector at the BR2 reactor for the SoLid experiment , 2018, 1802.02884.

[19]  M. Laveder,et al.  Model-independent ν¯e short-baseline oscillations from reactor spectral ratios , 2018, Physics Letters B.

[20]  E. Mccutchan,et al.  Dissecting Reactor Antineutrino Flux Calculations. , 2017, Physical review letters.

[21]  E. Mccutchan,et al.  Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup. , 2017, Physical review letters.

[22]  T. Materna,et al.  Reactor antineutrino shoulder explained by energy scale nonlinearities , 2017, 1705.09434.

[23]  Nick Ryder,et al.  A novel segmented-scintillator antineutrino detector , 2017, 1703.01683.

[24]  A. Hayes,et al.  Weak magnetism correction to allowed β decay for reactor antineutrino spectra , 2017, 1702.07520.

[25]  B. Han,et al.  Sterile Neutrino Search at the NEOS Experiment. , 2016, Physical review letters.

[26]  N. Ryder The SoLid anti-neutrino detector's readout system , 2016, 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).

[27]  Ibrahin Piñera-Hernández Identification of background components with the solid anti-neutrino detector , 2016, 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD).

[28]  I. G. Park,et al.  Observation of Energy and Baseline Dependent Reactor Antineutrino Disappearance in the RENO Experiment. , 2015, Physical review letters.

[29]  M. Chu,et al.  A parametrization of the cosmic-ray muon flux at sea-level , 2015, 1509.06176.

[30]  B. R. Littlejohn,et al.  The Detector System of The Daya Bay Reactor Antineutrino Experiment , 2015, 1508.03943.

[31]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[32]  F. Murtas,et al.  Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors , 2014 .

[33]  G F Cao,et al.  Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay , 2014, Physical review letters.

[34]  J. I. Crespo-Anadón,et al.  Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector , 2014, 1406.7763.

[35]  M. Danilov Sensitivity of DANSS detector to short range neutrino oscillations , 2013, 1311.2777.

[36]  A. Cucoanes,et al.  New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products. , 2012, Physical review letters.

[37]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[38]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[39]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[40]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[41]  M. Laveder,et al.  Statistical significance of the gallium anomaly , 2010, 1006.3244.

[42]  J. Ahn,et al.  RENO: An Experiment for Neutrino Oscillation Parameter theta_13 Using Reactor Neutrinos at Yonggwang , 2010, 1003.1391.

[43]  M. Decowski,et al.  Production of radioactive isotopes through cosmic muon spallation in KamLAND , 2009 .

[44]  et al,et al.  The Borexino detector at the Laboratori Nazionali del Gran Sasso , 2008, 0806.2400.

[45]  M. Laveder,et al.  Limits on ve and ve disappearance from Gallium and reactor experiments , 2007, 0711.4222.

[46]  Maury Goodman Thierry Lasserre,et al.  Double Chooz, A Search for the Neutrino Mixing Angle theta-13 , 2006, hep-ex/0606025.

[47]  D. Reyna A Simple Parameterization of the Cosmic-Ray Muon Momentum Spectra at the Surface as a Function of Zenith Angle , 2006, hep-ph/0604145.

[48]  H.H.K. Tang,et al.  Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground , 2004, IEEE Transactions on Nuclear Science.

[49]  D. H. White,et al.  Evidence for neutrino oscillations from the observation ofν¯eappearance in aν¯μbeam , 2001 .

[50]  R. Potheau,et al.  The Bugey 3 neutrino detector , 1996 .

[51]  F. B. Harrison,et al.  Detection of the Free Neutrino: a Confirmation. , 1956, Science.

[52]  S. Kalcheva Reactor Core Simulations for Determination of the Antineutrino Spectrum for the SoLid Experiment at BR 2 Reactor , 2017 .

[53]  D. A. Wickremasinghe,et al.  Improved search for ν¯(μ)→ν¯(e) oscillations in the MiniBooNE experiment. , 2012, Physical review letters.

[54]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .

[55]  B. Pontecorvo Neutrino Experiments and the Problem of Conservation of Leptonic Charge , 1967 .