Neurons with cholinergic phenotype in the visual system of Drosophila

The optic lobe of Drosophila houses about 60,000 neurons that are organized in parallel, retinotopically arranged columns. Based on the Golgi‐staining method, Fischbach and Dittrich ([1989] Cell Tissue Res 258:441–475) determined that each column contains about 90 identified cells. Each of these cells is supposed to release one or two different neurotransmitters. However, for most cells the released neurotransmitter is not known. Here we characterize the vast majority of the neurons in the Drosophila optic lobe that release acetylcholine (Ach), the major excitatory neurotransmitter of the insect central nervous system. We employed a promoter specific for cholinergic neurons and restricted its activity to single or a few cells using the MARCM technique. This approach allowed us to establish an anatomical map of neurons with a cholinergic phenotype based on their branching pattern. We identified 43 different types of neurons with a cholinergic phenotype. Thirty‐one of them match previously described members of nine different subgroups: Transmedullary (Tm), Transmedullary Y (TmY), Medulla intrinsic (Mi, Mt, and Pm), Bushy T (T), Translobula Plate (Tlp), and Lobula intrinsic (Lcn and Lt) neurons (Fischbach and Dittrich [1989]). Intriguingly, 12 newly identified cell types suggest that previous Golgi studies were not saturating and that the actual number of different neurons per column is higher than previously thought. This study and similar ones on other neurotransmitter systems will contribute towards a columnar wiring diagram and foster the functional dissection of the visual circuitry in Drosophila. J. Comp. Neurol. 519:162‐176, 2011. © 2010 Wiley‐Liss, Inc.

[1]  J. Storm-Mathisen,et al.  Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Dopamine-immunoreactive neurons in the blowfly visual system: light and electron microscopic immunocytochemistry. , 1988, Journal of chemical neuroanatomy.

[3]  Alexander Borst,et al.  Cholinergic and GABAergic pathways in fly motion vision , 2001, BMC Neuroscience.

[4]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[5]  A. Borst,et al.  Robust Coding of Ego-Motion in Descending Neurons of the Fly , 2009, The Journal of Neuroscience.

[6]  T. Kitamoto,et al.  Immunocytochemical study of choline acetyltransferase in Drosophila melanogaster: An analysis of cis‐regulatory regions controlling expression in the brain of cDNA‐transformed flies , 1995, The Journal of comparative neurology.

[7]  E. Gundelfinger,et al.  Immunohistochemical localization of a ligand‐binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster , 1993, The Journal of comparative neurology.

[8]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[9]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[10]  I. Meinertzhagen,et al.  Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster , 2010, The Journal of comparative neurology.

[11]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[12]  A. Hofbauer,et al.  Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster , 1991, Cell and Tissue Research.

[13]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Alexander Borst,et al.  Amplification of high-frequency synaptic inputs by active dendritic membrane processes , 1996, Nature.

[15]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[16]  E. Buchner,et al.  Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster , 1986, Cell and Tissue Research.

[17]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[18]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[19]  Alexander Borst,et al.  Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila , 2010, Nature Neuroscience.

[20]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[22]  Alexander Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.

[23]  M. Geffard,et al.  Dopamine-like immunoreactivity in the bee brain , 1989, Cell and Tissue Research.

[24]  R. Hardie Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.

[25]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[26]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[27]  D. Nässel,et al.  Quantitative determination of biogenic amines and DOPA in the CNS of adult and larval blowflies, Calliphora erythrocephala , 1983 .

[28]  J. Hildebrand,et al.  Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx moth Manduca sexta , 1989, Cell and Tissue Research.

[29]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[30]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[31]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[32]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[33]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.

[34]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[35]  N. J. Strausfeld,et al.  The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[36]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[37]  Ian A. Meinertzhagen,et al.  Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System , 2008, PloS one.

[38]  Richard D Fetter,et al.  Regulation of Postsynaptic Structure and Protein Localization by the Rho-Type Guanine Nucleotide Exchange Factor dPix , 2001, Neuron.

[39]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[40]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[41]  P. Salvaterra,et al.  Analysis of choline acetyltransferase protein in temperature sensitive mutant flies using newly generated monoclonal antibody , 1996, Neuroscience Research.

[42]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[43]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[44]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[45]  I. Meinertzhagen,et al.  The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods , 2007, Progress in Neurobiology.

[46]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[47]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[48]  E. Meyer,et al.  Insect optic lobe neurons identifiable with monoclonal antibodies to GABA , 2004, Histochemistry.

[49]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[50]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  N. Klemm Histochemistry of putative transmitter substances in the insect brain , 1976, Progress in Neurobiology.

[52]  N. Strausfeld,et al.  Anatomical organization of retinotopic motion‐sensitive pathways in the optic lobes of flies , 2003, Microscopy research and technique.

[53]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[54]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[55]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[56]  N. Strausfeld Mosaic Organizations, Layers, and Visual Pathways in the Insect Brain , 1976 .

[57]  N. Strausfeld,et al.  The functional organization of male-specific visual neurons in flies , 1991, Journal of Comparative Physiology A.

[58]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[59]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[60]  A. Borst,et al.  Local and global motion preferences in descending neurons of the fly , 2009, Journal of Comparative Physiology A.

[61]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[62]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[63]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[64]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[65]  P. Salvaterra,et al.  Localization of choline acetyltransferase‐expressing neurons in Drosophila nervous system , 1999, Microscopy research and technique.

[66]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa , 1996, The Journal of Neuroscience.

[67]  Alexander Borst,et al.  Synaptic Organization of Lobula Plate Tangential Cells in Drosophila: Dα7 Cholinergic Receptors , 2009, Journal of neurogenetics.

[68]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[69]  N. Strausfeld,et al.  Retinotopic pathways providing motion‐selective information to the lobula from peripheral elementary motion‐detecting circuits , 2003, The Journal of comparative neurology.

[70]  J. Storm-Mathisen,et al.  Taurine‐like immunoreactivity in the brain of the honeybee , 1988, The Journal of comparative neurology.

[71]  V. Budnik,et al.  The drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure , 1994, Neuron.

[72]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[73]  T. Kitamoto,et al.  Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. , 2001, Brain research. Gene expression patterns.

[74]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[75]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.