Secure quantum signatures using insecure quantum channels

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under EP/G009821/1 and EP/K022717/1. P.W. gratefully acknowledges support from the COST Action MP1006. A.K. was partially supported by a grant from FQXi and by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

[1]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[2]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[3]  Vasek Chvátal,et al.  The tail of the hypergeometric distribution , 1979, Discret. Math..

[4]  David Chaum,et al.  Unconditionally Secure Digital Signatures , 1990, CRYPTO.

[5]  H. Chau,et al.  Efficient Quantum Key Distribution , 1998, quant-ph/9803007.

[6]  Junji Shikata,et al.  Unconditionally Secure Digital Signature Schemes Admitting Transferability , 2000, ASIACRYPT.

[7]  Quantum Digital Signatures , 2001, quant-ph/0105032.

[8]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[9]  R. Renner,et al.  Information-theoretic security proof for quantum-key-distribution protocols , 2005, quant-ph/0502064.

[10]  M. Koashi Efficient quantum key distribution with practical sources and detectors , 2006, quant-ph/0609180.

[11]  R. Renner Symmetry of large physical systems implies independence of subsystems , 2007 .

[12]  Renato Renner Symmetry implies independence , 2007 .

[13]  Renato Renner,et al.  Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses , 2006, quant-ph/0610151.

[14]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[15]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[16]  Valerio Scarani,et al.  Finite-key analysis for practical implementations of quantum key distribution , 2008, 0811.2628.

[17]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[18]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[19]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[20]  Renato Renner,et al.  An intuitive proof of the data processing inequality , 2011, Quantum Inf. Comput..

[21]  Agnes Ferenczi,et al.  Security proof methods for quantum key distribution protocols , 2013 .

[22]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[23]  David Elkouss,et al.  Fundamental finite key limits for information reconciliation in quantum key distribution , 2014, ISIT.

[24]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[25]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[26]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[27]  V. Dunjko,et al.  Quantum digital signatures with quantum-key-distribution components , 2014, 1403.5551.

[28]  Tian-Yin Wang,et al.  Security of quantum digital signatures for classical messages , 2015, Scientific Reports.

[29]  Juan Miguel Arrazola,et al.  Multiparty quantum signature schemes , 2015, Quantum Inf. Comput..

[30]  Douglas R. Stinson,et al.  Unconditionally secure signature schemes revisited , 2016, J. Math. Cryptol..

[31]  V. Dunjko,et al.  Experimental demonstration of kilometer-range quantum digital signatures , 2015, 1509.07827.