Population Size Influence on the Genetic and Ant Algorithms Performance in Case of Cultivation Process Modeling

In this paper, an investigation of the influence of the population size on the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters—maximum specific growth rate (\(\mu _{max}\)), saturation constant (\(k_{S}\)) and yield coefficient (\(Y_{S/X}\)) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes and 5 and 100 ants in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for GA and 70 ants for ACO for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes for GA and 70 ants for ACO, does not improve the solution accuracy. Moreover, the computational time is increased significantly.

[1]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[2]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  Stefka Fidanova Simulated Annealing: A Monte Carlo Method for GPS Surveying , 2006, International Conference on Computational Science.

[5]  David E. Goldberg,et al.  The parameter-less genetic algorithm in practice , 2004, Inf. Sci..

[6]  D. E. Goldberg,et al.  Optimization and Machine Learning , 2022 .

[7]  C. Wandrey,et al.  Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor , 2004, Bioprocess and biosystems engineering.

[8]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[9]  Tarek Y. ElMekkawy,et al.  Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments , 2007 .

[10]  Alan Piszcz,et al.  Genetic programming: optimal population sizes for varying complexity problems , 2006, GECCO '06.

[11]  Olympia Roeva,et al.  Improvement of genetic algorithm performance for identification of cultivation process models , 2008 .

[12]  Pedro A. Diaz-Gomez,et al.  Initial Population for Genetic Algorithms: A Metric Approach , 2007, GEM.

[13]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[14]  Miguel A. Vega-Rodríguez,et al.  AlineaGA—a genetic algorithm with local search optimization for multiple sequence alignment , 2010, Applied Intelligence.

[15]  Olympia Roeva,et al.  Fed-Batch Cultivation Control Based on Genetic Algorithm PID Controller Tuning , 2010, NMA.

[16]  Olympia Roeva,et al.  Application of Genetic Algorithms and Ant Colony Optimization for Modelling of E. coli Cultivation Process , 2012 .

[17]  Bernd Hitzmann,et al.  Feed Forward/Feedback Control of Glucose Concentration During Cultivation of Escherichia Coli , 2001 .

[18]  A. Wolfe,et al.  Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli , 2000, Journal of Industrial Microbiology and Biotechnology.

[19]  Kouame Kan Benjamin,et al.  Genetic Algorithms Using for a Batch Fermentation Process Identification , 2008 .

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[22]  Gunhan Mirac Bayhan,et al.  A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints , 2011, Eng. Appl. Artif. Intell..

[23]  J.T. Alander,et al.  On optimal population size of genetic algorithms , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.

[24]  John Swarbrooke,et al.  Case Study 18 – Las Vegas, Nevada, USA , 2007 .

[25]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[26]  Jacek Kucharski,et al.  GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem , 2012 .

[27]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[30]  N. Volk,et al.  Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli , 2003, Bioprocess and biosystems engineering.

[31]  Cláudio F. Lima,et al.  A review of adaptive population sizing schemes in genetic algorithms , 2005, GECCO '05.

[32]  Hussain N. Al-Duwaish A genetic approach to the identification of linear dynamical systems with static nonlinearities , 2000, Int. J. Syst. Sci..

[33]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[34]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[35]  Eric Goodman,et al.  Investigations in meta-GAs: panaceas or pipe dreams? , 2005, GECCO '05.

[36]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.